4,102 research outputs found

    Asynchronous Variational Integrators

    Get PDF
    We describe a new class of asynchronous variational integrators (AVI) for nonlinear elastodynamics. The AVIs are distinguished by the following attributes: (i) The algorithms permit the selection of independent time steps in each element, and the local time steps need not bear an integral relation to each other; (ii) the algorithms derive from a spacetime form of a discrete version of Hamilton’s variational principle. As a consequence of this variational structure, the algorithms conserve local momenta and a local discrete multisymplectic structure exactly. To guide the development of the discretizations, a spacetime multisymplectic formulation of elastodynamics is presented. The variational principle used incorporates both configuration and spacetime reference variations. This allows a unified treatment of all the conservation properties of the system.A discrete version of reference configuration is also considered, providing a natural definition of a discrete energy. The possibilities for discrete energy conservation are evaluated. Numerical tests reveal that, even when local energy balance is not enforced exactly, the global and local energy behavior of the AVIs is quite remarkable, a property which can probably be traced to the symplectic nature of the algorith

    Non-Gaussianity in the HILC foreground-reduced three-year WMAP CMB map

    Full text link
    A detection or nondetection of primordial non-Gaussianity in the CMB data is essential not only to test alternative models of the physics of the early universe but also to discriminate among classes of inflationary models. Given this far reaching consequences of such a non-Gaussianity detection for our understanding of the physics of the early universe, it is important to employ alternative indicators in order to have further information about the Gaussianity features of CMB that may be helpful for identifying their origins. In this way, a considerable effort has recently gone into the design of non-Gaussianity indicators, and in their application in the search for deviation from Gaussianity in the CMB data. Recently we have proposed two new large-angle non-Gaussianity indicators which provide measures of the departure from Gaussianity on large angular scales. We have used these indicators to carry out analyses of Gaussianity of the single frequency bands and of the available foreground-reduced {\it five-year} maps with and without the KQ75 mask. Here we extend and complement these studies by performing a new analysis of deviation from Gaussianity of the {\it three-year} harmonic ILC (HILC) foreground-reduced full-sky and KQ75 masked maps obtained from WMAP data. We show that this full-sky foreground-reduced maps presents a significant deviation from Gaussianity, which is brought down to a level of consistency with Gaussianity when the KQ75 mask is employed.Comment: 6 pages, 1 figure. To appear in IJMPD (2010). V2: Corrected ref.[8]

    A Study of Gaussianity in CMB band maps

    Full text link
    The detection of non-Gaussianity in the CMB data would rule out a number of inflationary models. A null detection of non-Gaussianity, instead, would exclude alternative models for the early universe. Thus, a detection or non-detection of primordial non-Gaussianity in the CMB data is crucial to discriminate among inflationary models, and to test alternative scenarios. However, there are various non-cosmological sources of non-Gaussianity. This makes important to employ different indicators in order to detect distinct forms of non-Gaussianity in CMB data. Recently, we proposed two new indicators to measure deviation from Gaussianity on large angular scales, and used them to study the Gaussianity of the raw band WMAP maps with and without the KQ75 mask. Here we extend this work by using these indicators to perform similar analyses of deviation from Gaussianity of the foreground-reduced Q, V, and W band maps. We show that there is a significant deviation from Gaussianity in the considered full-sky maps, which is reduced to a level consistent with Gaussianity when the KQ75 mask is employed.Comment: 5 pages, 2 PS figures, uses ws-ijmpd.cls ; to be published in the International Journal of Modern Physics

    The Midpoint Rule as a Variational--Symplectic Integrator. I. Hamiltonian Systems

    Full text link
    Numerical algorithms based on variational and symplectic integrators exhibit special features that make them promising candidates for application to general relativity and other constrained Hamiltonian systems. This paper lays part of the foundation for such applications. The midpoint rule for Hamilton's equations is examined from the perspectives of variational and symplectic integrators. It is shown that the midpoint rule preserves the symplectic form, conserves Noether charges, and exhibits excellent long--term energy behavior. The energy behavior is explained by the result, shown here, that the midpoint rule exactly conserves a phase space function that is close to the Hamiltonian. The presentation includes several examples.Comment: 11 pages, 8 figures, REVTe

    Electronic structure of silicon-based nanostructures

    Get PDF
    We have developed an unifying tight-binding Hamiltonian that can account for the electronic properties of recently proposed Si-based nanostructures, namely, Si graphene-like sheets and Si nanotubes. We considered the sp3s∗sp^3s^* and sp3sp^{3} models up to first- and second-nearest neighbors, respectively. Our results show that the Si graphene-like sheets considered here are metals or zero-gap semiconductors, and that the corresponding Si nanotubes follow the so-called Hamada's rule [Phys. Rev. Lett. {\bf 68}, 1579 1992]. Comparison to a recent {\it ab initio} calculation is made.Comment: 12 pages, 6 Figure

    Variational Integrators for Almost-Integrable Systems

    Full text link
    We construct several variational integrators--integrators based on a discrete variational principle--for systems with Lagrangians of the form L = L_A + epsilon L_B, with epsilon << 1, where L_A describes an integrable system. These integrators exploit that epsilon << 1 to increase their accuracy by constructing discrete Lagrangians based on the assumption that the integrator trajectory is close to that of the integrable system. Several of the integrators we present are equivalent to well-known symplectic integrators for the equivalent perturbed Hamiltonian systems, but their construction and error analysis is significantly simpler in the variational framework. One novel method we present, involving a weighted time-averaging of the perturbing terms, removes all errors from the integration at O(epsilon). This last method is implicit, and involves evaluating a potentially expensive time-integral, but for some systems and some error tolerances it can significantly outperform traditional simulation methods.Comment: 14 pages, 4 figures. Version 2: added informative example; as accepted by Celestial Mechanics and Dynamical Astronom

    An interface to retrieve personal memories using an iconic visual language

    Get PDF
    Relevant past events can be remembered when visualizing related pictures. The main difficulty is how to find these photos in a large personal collection. Query definition and image annotation are key issues to overcome this problem. The former is relevant due to the diversity of the clues provided by our memory when recovering a past moment and the later because images need to be annotated with information regarding those clues to be retrieved. Consequently, tools to recover past memories should deal carefully with these two tasks. This paper describes a user interface designed to explore pictures from personal memories. Users can query the media collection in several ways and for this reason an iconic visual language to define queries is proposed. Automatic and semi-automatic annotation is also performed using the image content and the audio information obtained when users show their images to others. The paper also presents the user interface evaluation based on tests with 58 participants

    Incarceration, identity and resilience : understanding the long-term psychological impacts of racial trauma on Japanese Americans who were imprisoned during World War II

    Get PDF
    The purpose of this exploratory study was to deepen the understanding around the impacts of racial trauma and civil rights violations on Japanese Americans’ enduring sense of belonging and legitimacy in the United States. The study used semi-structured interviews with 13 Japanese Americans who were incarcerated during WWII to gather qualitative data around their experiences, in order to explore the long-term psychological impact of imprisonment and additionally, how the psychological effects are related to the current social environment. The major findings of this study are that formerly incarcerated Japanese Americans experience long term psychological consequences as a result of their imprisonment experiences and that these psychological effects shape their perception of modern day political and social contexts. The major findings from the study fell into five major categories: 1) decreased feelings of safety 2) solidarity across racial lines 3) repetition of history 4) increased activism and community empowerment 5) present-day demagoguery and xenophobia. These findings contribute to the existing literature by expanding on the understanding of how Japanese Americans’ incarceration trauma response interacts with modern day social and political contexts. This study articulates that Japanese Americans’ incarceration trauma response is triggered by witnessing prejudice experienced by other minority groups in the United States and also by a xenophobic political and social climate. However, this study formulates that in addition to these negative impacts, Japanese Americans’ also experience positive outcomes, including increased empathy between oppressed groups
    • 

    corecore