411 research outputs found

    The lumbosacral angle does not reflect progressive tethered cord syndrome in children with spinal dysraphism

    Get PDF
    Purpose: Our goal was to validate the hypothesis that the lumbosacral angle (LSA) increases in children with spinal dysraphism who present with progressive symptoms and signs of tethered cord syndrome (TCS), and if so, to determine for which different types and/or levels the LSA would be a valid indicator of progressive TCS. Moreover, we studied the influence of surgical untethering and eventual retethering on the LSA. Methods: We retrospectively analyzed the data of 33 children with spinal dysraphism and 33 controls with medulloblastoma. We measured the LSA at different moments during follow-up and correlated this with progression in symptomatology. Results: LSA measurements had an acceptable intra- and interobserver variability, however, some children with severe deformity of the caudal part of the spinal column, and for obvious reasons those with caudal regression syndrome were excluded. LSA measurements in children with spinal dysraphism were significantly different from the control group (mean LSA change, 21.0° and 3.1° respectively). However, both groups were not age-matched, and when dividing both groups into comparable age categories, we no longer observed a significant difference. Moreover, we did not observe a significant difference between 26 children with progressive TCS as opposed to seven children with stable TCS (mean LSA change, 20.6° and 22.4° respectively). Conclusions: We did not observe significant differences in LSA measurements for children with clinically progressive TCS as opposed to clinically stable TCS. Therefore, the LSA does not help the clinician to dete

    Budding Yeast Dma Proteins Control Septin Dynamics and the Spindle Position Checkpoint by Promoting the Recruitment of the Elm1 Kinase to the Bud Neck

    Get PDF
    The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling

    Obesity and incidence of cancer: a large cohort study of over 145 000 adults in Austria

    Get PDF
    We investigated the relation of overweight and obesity with cancer in a population-based cohort of more than 145 000 Austrian adults over an average of 9.9 years. Incident cancers (n=6241) were identified through the state cancer registry. Using Cox proportional-hazards models adjusted for smoking and occupation, increases in relative body weight in men were associated with colon cancer (hazard rate (HR) ratio 2.48; 95% confidence interval (CI): 1.15, 5.39 for body mass index (BMI) ⩾35 kg m−2) and pancreatic cancer (HR 2.34, 95% CI: 1.17, 4.66 for BMI>30 kg m−2) compared to participants with normal weight (BMI 18.5–24.9 kg m−2). In women, there was a weak positive association between increasing BMI and all cancers combined, and strong associations with non-Hodgkin's lymphomas (HR 2.86, 95% CI: 1.49, 5.49 for BMI⩾30 kg m−2) and cancers of the uterine corpus (HR 3.93, 95% CI: 2.35, 6.56 for BMI⩾35 kg m−2). Incidence of breast cancer was positively associated with high BMI only after age 65 years. These findings provide further evidence that overweight is associated with the incidence of several types of cancer

    Role of Cyclin B1/Cdc2 Up-Regulation in the Development of Mitotic Prometaphase Arrest in Human Breast Cancer Cells Treated with Nocodazole

    Get PDF
    Background: During a normal cell cycle, the transition from G 2 phase to mitotic phase is triggered by the activation of the cyclin B1-dependent Cdc2 kinase. Here we report our finding that treatment of MCF-7 human breast cancer cells with nocodazole, a prototypic microtubule inhibitor, results in strong up-regulation of cyclin B1 and Cdc2 levels, and their increases are required for the development of mitotic prometaphase arrest and characteristic phenotypes. Methodology/Principal Findings: It was observed that there was a time-dependent early increase in cyclin B1 and Cdc2 protein levels (peaking between 12 and 24 h post treatment), and their levels started to decline after the initial increase. This early up-regulation of cyclin B1 and Cdc2 closely matched in timing the nocodazole-induced mitotic prometaphase arrest. Selective knockdown of cyclin B1or Cdc2 each abrogated nocodazole-induced accumulation of prometaphase cells. The nocodazole-induced prometaphase arrest was also abrogated by pre-treatment of cells with roscovitine, an inhibitor of cyclin-dependent kinases, or with cycloheximide, a protein synthesis inhibitor that was found to suppress cyclin B1 and Cdc2 up-regulation. In addition, we found that MAD2 knockdown abrogated nocodazole-induced accumulation of cyclin B1 and Cdc2 proteins, which was accompanied by an attenuation of nocodazole-induced prometaphase arrest. Conclusions/Significance: These observations demonstrate that the strong early up-regulation of cyclin B1 and Cdc2 contributes critically to the rapid and selective accumulation of prometaphase-arrested cells, a phenomenon associate

    Cohesin Is Dispensable for Centromere Cohesion in Human Cells

    Get PDF
    BACKGROUND: Proper regulation of the cohesion at the centromeres of human chromosomes is essential for accurate genome transmission. Exactly how cohesion is maintained and is then dissolved in anaphase is not understood. PRINCIPAL FINDINGS: We have investigated the role of the cohesin complex at centromeres in human cells both by depleting cohesin subunits using RNA interference and also by expressing a non-cleavable version of the Rad21 cohesin protein. Rad21 depletion results in aberrant anaphase, during which the sister chromatids separate and segregate in an asynchronous fashion. However, centromere cohesion was maintained before anaphase in Rad21-depleted cells, and the primary constrictions at centromeres were indistinguishable from those in control cells. Expression of non-cleavable Rad21 (NC-Rad21), in which the sites normally cleaved by separase are mutated, resulted in delayed sister chromatid resolution in prophase and prometaphase, and a blockage of chromosome arm separation in anaphase, but did not impede centromere separation. CONCLUSIONS: These data indicate that cohesin complexes are dispensable for sister cohesion in early mitosis, yet play an important part in the fidelity of sister separation and segregation during anaphase. Cleavage at the separase-sensitive sites of Rad21 is important for arm separation, but not for centromere separation

    Polarized Growth in the Absence of F-Actin in Saccharomyces cerevisiae Exiting Quiescence

    Get PDF
    Polarity establishment and maintenance are crucial for morphogenesis and development. In budding yeast, these two intricate processes involve the superposition of regulatory loops between polarity landmarks, RHO GTPases, actin-mediated vesicles transport and endocytosis. Deciphering the chronology and the significance of each molecular step of polarized growth is therefore very challenging.We have taken advantage of the fact that yeast quiescent cells display actin bodies, a non polarized actin structure, to evaluate the role of F-actin in bud emergence. Here we show that upon exit from quiescence, actin cables are not required for the first steps of polarized growth. We further show that polarized growth can occur in the absence of actin patch-mediated endocytosis. We finally establish, using latrunculin-A, that the first steps of polarized growth do not require any F-actin containing structures. Yet, these structures are required for the formation of a bona fide daughter cell and cell cycle completion. We propose that upon exit from quiescence in the absence of F-actin, secretory vesicles randomly reach the plasma membrane but preferentially dock and fuse where polarity cues are localized, this being sufficient to trigger polarized growth

    A Conserved Arginine-Rich Motif within the Hypervariable N-Domain of Drosophila Centromeric Histone H3 (CenH3CID) Mediates BubR1 Recruitment

    Get PDF
    Centromere identity is determined epigenetically by deposition of CenH3, a centromere-specific histone H3 variant that dictates kinetochore assembly. The molecular basis of the contribution of CenH3 to centromere/kinetochore functions is, however, incompletely understood, as its interactions with the rest of centromere/kinetochore components remain largely uncharacterised at the molecular/structural level.Here, we report on the contribution of Drosophila CenH3(CID) to recruitment of BubR1, a conserved kinetochore protein that is a core component of the spindle attachment checkpoint (SAC). This interaction is mediated by the N-terminal domain of CenH3(CID) (NCenH3(CID)), as tethering NCenH3(CID) to an ectopic reporter construct results in BubR1 recruitment and BubR1-dependent silencing of the reporter gene. Here, we also show that this interaction depends on a short arginine (R)-rich motif and that, most remarkably, it appears to be evolutionarily conserved, as tethering constructs carrying the highly divergent NCenH3 of budding yeast and human also induce silencing of the reporter. Interestingly, though NCenH3 shows an exceedingly low degree of conservation, the presence of R-rich motives is a common feature of NCenH3 from distant species. Finally, our results also indicate that two other conserved sequence motives within NCenH3(CID) might also be involved in interactions with kinetochore components.These results unveil an unexpected contribution of the hypervariable N-domain of CenH3 to recruitment of kinetochore components, identifying simple R-rich motives within it as evolutionary conserved structural determinants involved in BubR1 recruitment
    corecore