26 research outputs found

    Editorial: web of science and scopus impact in IJMIR

    Get PDF
    Computer Systems, Imagery and Medi

    A survey of traditional and deep learning-based feature descriptors for high dimensional data in computer vision

    Get PDF
    Higher dimensional data such as video and 3D are the leading edge of multimedia retrieval and computer vision research. In this survey, we give a comprehensive overview and key insights into the state of the art of higher dimensional features from deep learning and also traditional approaches. Current approaches are frequently using 3D information from the sensor or are using 3D in modeling and understanding the 3D world. With the growth of prevalent application areas such as 3D games, self-driving automobiles, health monitoring and sports activity training, a wide variety of new sensors have allowed researchers to develop feature description models beyond 2D. Although higher dimensional data enhance the performance of methods on numerous tasks, they can also introduce new challenges and problems. The higher dimensionality of the data often leads to more complicated structures which present additional problems in both extracting meaningful content and in adapting it for current machine learning algorithms. Due to the major importance of the evaluation process, we also present an overview of the current datasets and benchmarks. Moreover, based on more than 330 papers from this study, we present the major challenges and future directions. Computer Systems, Imagery and Medi

    Integrating information theory and adversarial learning for cross-modal retrieval

    Get PDF
    Accurately matching visual and textual data in cross-modal retrieval has been widely studied in the multimedia community. To address these challenges posited by the heterogeneity gap and the semantic gap, we propose integrating Shannon information theory and adversarial learning. In terms of the heterogeneity gap, we integrate modality classification and information entropy maximization adversarially. For this purpose, a modality classifier (as a discriminator) is built to distinguish the text and image modalities according to their different statistical properties. This discriminator uses its output probabilities to compute Shannon information entropy, which measures the uncertainty of the modality classification it performs. Moreover, feature encoders (as a generator) project uni-modal features into a commonly shared space and attempt to fool the discriminator by maximizing its output information entropy. Thus, maximizing information entropy gradually reduces the distribution discrepancy of cross-modal features, thereby achieving a domain confusion state where the discriminator cannot classify two modalities confidently. To reduce the semantic gap, Kullback-Leibler (KL) divergence and bi-directional triplet loss are used to associate the intra- and inter-modality similarity between features in the shared space. Furthermore, a regularization term based on KL-divergence with temperature scaling is used to calibrate the biased label classifier caused by the data imbalance issue. Extensive experiments with four deep models on four benchmarks are conducted to demonstrate the effectiveness of the proposed approach.Computer Systems, Imagery and Medi

    New ideas and trends in deep multimodal content understanding: a review

    Get PDF
    The focus of this survey is on the analysis of two modalities of multimodal deep learning: image and text. Unlike classic reviews of deep learning where monomodal image classifiers such as VGG, ResNet and Inception module are central topics, this paper will examine recent multimodal deep models and structures, including auto-encoders, generative adversarial nets and their variants. These models go beyond the simple image classifiers in which they can do uni-directional (e.g. image captioning, image generation) and bi-directional (e.g. cross-modal retrieval, visual question answering) multimodal tasks. Besides, we analyze two aspects of the challenge in terms of better content understanding in deep multimodal applications. We then introduce current ideas and trends in deep multimodal feature learning, such as feature embedding approaches and objective function design, which are crucial in overcoming the aforementioned challenges. Finally, we include several promising directions for future research.Computer Systems, Imagery and Medi

    Dual Gaussian-based variational subspace disentanglement for visible-infrared person re-identification

    Get PDF
    Visible-infrared person re-identification (VI-ReID) is a challenging and essential task in night-time intelligent surveillance systems. Except for the intra-modality variance that RGB-RGB person reidentification mainly overcomes, VI-ReID suffers from additional inter-modality variance caused by the inherent heterogeneous gap. To solve the problem, we present a carefully designed dual Gaussian-based variational auto-encoder (DG-VAE), which disentangles an identity-discriminable and an identity-ambiguous cross-modalityfeature subspace, following a mixture-of-Gaussians (MoG) prior and a standard Gaussian distribution prior, respectively. Disentangling cross-modality identity-discriminable features leads to more robust retrieval for VI-ReID. To achieve efficient optimization like conventional VAE, we theoretically derive two variational inference terms for the MoG prior under the supervised setting, which not only restricts the identity-discriminable subspace so that the model explicitly handles the cross-modality intra-identity variance, but also enables the MoG distribution to avoid posterior collapse. Furthermore, we propose a triplet swap reconstruction (TSR) strategy to promote the above disentangling process. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on two VI-ReID datasets. Codes will be available at https://github.com/TPCD/DG-VAE.Computer Systems, Imagery and Medi

    Meta reconciliation normalization for lifelong person re-identification

    Get PDF
    Lifelong person re-identification (LReID) is a challenging and emerging task, which concerns the ReID capability on both seen and unseen domains after learning across different domains continually. Existing works on LReID are devoted to introducing commonlyused lifelong learning approaches, while neglecting a serious side effect caused by using normalization layers in the context of domainincremental learning. In this work, we aim to raise awareness of the importance of training proper batch normalization layers by proposing a new meta reconciliation normalization (MRN) method specifically designed for tackling LReID. Our MRN consists of grouped mixture standardization and additive rectified rescaling components, which are able to automatically maintain an optimal balance between domain-dependent and domain-independent statistics, and even adapt MRN for different testing instances. Furthermore, inspired by synaptic plasticity in human brain, we present a MRNbased meta-learning framework for mining the meta-knowledge shared across different domains, even without replaying any previous data, and further improve the model’s LReID ability with theoretical analyses. Our method achieves new state-of-the-art performances on both balanced and imbalanced LReID benchmarks.Computer Systems, Imagery and Medi

    Deep image retrieval: a survey

    Get PDF
    In recent years a vast amount of visual content has been generated and shared from various fields, such as social media platforms, medical images, and robotics. This abundance of content creation and sharing has introduced new challenges. In particular, searching databases for similar content, i.e.content based image retrieval (CBIR), is a long-established research area, and more efficient and accurate methods are needed for real time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the process of intelligent search. In this survey we organize and review recent CBIR works that are developed based on deep learning algorithms and techniques, including insights and techniques from recent papers. We identify and present the commonly-used benchmarks and evaluation methods used in the field. We collect common challenges and propose promising future directions. More specifically, we focus on image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure, deep features, feature enhancement methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, aiming to promote a global view of the field of instance-based CBIR. Computer Systems, Imagery and Medi

    Special issue on visual information retrieval

    No full text
    Computer Systems, Imagery and Medi

    Top multimedia information retrieval papers

    No full text
    Computer Systems, Imagery and Medi
    corecore