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ABSTRACT

Lifelong person re-identification (LReID) is a challenging and emerg-

ing task, which concerns the ReID capability on both seen and

unseen domains after learning across different domains continually.

Existing works on LReID are devoted to introducing commonly-

used lifelong learning approaches, while neglecting a serious side

effect caused by using normalization layers in the context of domain-

incremental learning. In this work, we aim to raise awareness of the

importance of training proper batch normalization layers by propos-

ing a new meta reconciliation normalization (MRN) method specif-

ically designed for tackling LReID. Our MRN consists of grouped

mixture standardization and additive rectified rescaling compo-

nents, which are able to automatically maintain an optimal balance

between domain-dependent and domain-independent statistics, and

even adapt MRN for different testing instances. Furthermore, in-

spired by synaptic plasticity in human brain, we present a MRN-

based meta-learning framework for mining the meta-knowledge

shared across different domains, even without replaying any pre-

vious data, and further improve the model’s LReID ability with

theoretical analyses. Our method achieves new state-of-the-art per-

formances on both balanced and imbalanced LReID benchmarks.
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Figure 1: (a) Illustration of feature distribution shifts across

five different domains. Different shapes indicate different

person identities and different colors represent different do-

mains. Due to continual adaptation, the feature distribution

of Domain-1 suffers a significant shift, resulting in𝑑1 ≤ 𝑑5. (b)
Comparing the changes in three types of network parameters

when fine-tuning the model from Domain-1 to Domain-2.

’22), October 10–14, 2022, Lisboa, Portugal. ACM, Lisbon, Portugal,, 9 pages.
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1 INTRODUCTION

Lifelong person re-identification (LReID) is a practical extension

of conventional ReID tasks. Different from other ReID variants,

LReID aims to continually learn feature representations in a domain-

incremental fashion, and reduces backward catastrophic forgetting

on seen domains while improving the forward generalization ability

on unseen domains. Due to significant and accumulated distribu-

tion shifts across multiple domains, the core difficulty for LReID is

how to overcome the well-known catastrophic forgetting on seen

domains and at the same time retain the generalization ability on
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unseen domains. Recent state-of-the-art approaches [26, 31, 35]

address this difficulty by leveraging sophisticated lifelong learning

techniques, such as knowledge distillation [19] and data replay [27].

Although these methods have achieved promising performances

on the recent CNN architectures like ResNet variants and graph

network, they neglect the side effect caused by normalization lay-

ers, e.g., batch normalization (BN) [11], in the context of lifelong

learning [42].

To clarify this problem further, we count the changes in the

network parameters in the case of fine-tuning the model from one

domain to a new one (Fig. 1(a)). In particular, we analyze the changes

in terms of three types of parameters, i.e., convolutional weights,

BN weights and BN bias. From Fig. 1(a), we witness several findings:

(1) compared to convolutional weights, BN weights display a larger

variation after training on a new domain; (2) the BNs in shallow

layers are prone to performing translation transformation while

the ones in top layers tend to scale transformation that heavily

influences the relative positions of features; (3) the BN weights in

top layers suffer from more dramatic parameter changes than those

in shallow layers, which implies that top layers might include more

domain-specific information than shallow layers. Based on these

promising findings, we can expect that the parameter changes in BN

layers lead more to catastrophic forgetting for LReID, since BN layers

tend to capture the domain-specific characteristics[28]. To solve the

limitation of BN, we thereby propose to learn a new reconciliation

normalization (RN) consisting of grouped mixture standardization

(GMS) and additive rectified rescaling (ARR). The former allows the

model to automatically integrate BN with instance normalization

(IN) [30] that is independent on domain-specific statistics. The latter

endows RN with the ability to adaptively rectify the rescaling pro-

cess based on changing statistics, so as to accomplish an instance-

aware normalization. In short, our RN is a new replay-free approach

toward reconciling domain-dependent and domain-independent

statistics in the context of domain-incremental learning, without

accessing previous data.

Even though RN is more flexible than BN, there is still an opti-

mization bottleneck caused by stability-plasticity dilemma (SPD)

[24], i.e., improving less-forgetting ability always leads to degrad-

ing performance on new tasks. However, the synaptic plasticity in

human brain has more complex mechanisms so as to protect against

interference between old and new knowledge [8]. Motivated by

the explorations in computational neuroscience[5], we explore a

meta-learning framework to endow our RN with synaptic plasticity

through a process of emulating “reconciliation” [14] in our brain.

Our approach is called meta reconciliation normalization (MRN).

Specifically, MRN first experiences an one-step visual update to-

wards the objective of learning new knowledge only. This step is

analogous to the hippocampus rapidly learning and acquiring new

experiences. Next, we employ a balanced knowledge distillation to

examine whether the one-step updated parameters are consistent

with the optimized direction of reviewing old knowledge. This ex-

amination imitates the summarizing and consolidating process in

our brains. Furthermore, based on the theoretical analysis in Sec. 3.3,

we find that meta-optimization implicitly introduces an additional

regularization term beneficial for coordinating the two optimization

objectives in the SPD, compared with the conventional optimization

(e.g., weighted sum of loss functions). Eventually, our MRN learns

to reconcile the SPD and encourage the model to learn more com-

mon meta-knowledge, thereby generating less domain-dependent

feature representation. From the comparison in Fig. 1(b), the pa-

rameters in our proposed MRN lead to smaller fluctuation than

those of BN. This behavior is important to mitigate the catastrophic

forgetting on old domains and leverage generalization ability on

unseen domains. Our contributions in this work are three-fold:

• We analyse and address the problems in LReID from a new

perspective of domain dependence, and design a new rec-

onciliation normalization layer that consists of GMS and

ARR components, to improve performance on both seen and

unseen domains.

• We propose a meta-learning framework for LReID, which

allows RN to imitate the hippocampus in our brain and learn

synaptic plasticity that protects against interference between

old and new knowledge, and theoretically analyse the mech-

anism of meta-optimization.

• Extensive experiments show that our method achieves new

state-of-the-art performances on both balanced and imbal-

anced evaluation protocols in LReID tasks.

2 RELATEDWORK

2.1 Lifelong Person Re-identification

With the demand of learning in non-stationary scenarios, LReID has

become increasingly important in the ReID community. Recently,

the work in [26] proposed a new benchmark for evaluating LReID

by reorganizing several popular ReID datasets. Compared to the

conventional lifelong learning tasks, LReID considers not only the

catastrophic forgetting problem but also the ability to generalise on

unseen classes and even unseen domains. Pu et al. introduced an

adaptive knowledge accumulation [26] framework, which enables

new-old knowledge graphs to communicate mutually, leading to

knowledge accumulation. Wu et al. integrated multiple incremental

learning techniques, e.g., exemplar replay, balanced finetune and

knowledge distilation (KD), to make the lifelong training process

coherent [35]. Zhao et al. proposed to improve KD with selectively

distilling knowledge by neighborhood selection [37].

However, these methods address the LReID task by learning from

conventional class-incremental tasks, neglecting the characteris-

tics of LReID. Inspired by extensive explorations of normalization

in ReID[3, 12, 23, 41, 42], we analyse the reason of catastrophic

forgetting from a perspective of normalization and propose a new

reconciliation normalization to approximate domain-independent

normalization, thereby overcoming the challenges of person re-

identification in the context of lifelong learning.

2.2 Normalization in Person Re-Identification

In the last few years, ReID research has seen great progress and

been evolved into various tasks, such as fully-supervised (FS) task,

unsupervised domain adaption (UDA), and domain generalization

(DG). Meanwhile, normalization, as an important technique in deep

neural network, has been exploited to adapt to these different tasks

as well. 1) In the FS task, Pan et al. presented IBN-Net[23] to enhance

learning and generalization capacities by carefully integrating in-

stance normalization (IN) [30] and batch normalization (BN) [11]

as building blocks; 2) For the UDA task, Zhuang et al. proposed
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a new camera-specific BN [42] to narrow the gap across different

domains or cameras, and indicated that utilizing unlabeled test data

to adapt the statistics in BN achieves considerable improvements.

Later, Bai et al. designed multiple domain-specific BNs[1] for han-

dling domain characteristics; 3) In the DG task, Jia et al. provided

a sample yet efficient proposal [12] by selectively replacing BN

with IN. The most related work [3] proposed a meta batch-instance

normalization (MBIN) for DG, which leveraged meta-learning par-

adigm to balance the output of BN and IN for better generalization.

Whereas this method needs to access multiple domain sources at

once, which violates the setting of LReID. Furthermore, when di-

rectly employing MBIN in our framework, it still tends to over-fit

on current domain without our meta rectified scaling, as experi-

mentally demonstrated in Sec. 4.4.

BN revisiting. The BN[11] layer is designed to reduce the internal

covariate shifting. In training, it first standardizes each input feature

with the mini-batch statistics and records them for approximating

the global statistics; Then, BN restores the representation power of

the standardized features by utilizing learnable scaling parameters.

During testing, given an input feature, the output of the BN layer

is:

𝑥𝑜𝑢𝑡 = 𝛾 (𝐵)
𝑥𝑖𝑛 − 𝜇 (𝐵)√
𝜎2(𝐵) + 𝜖

+ 𝛽 (𝐵) , (1)

where 𝑥𝑖𝑛 and 𝑥𝑜𝑢𝑡 ∈ ℝ𝐶×𝐻×𝑊 are the input and output feature

maps with𝐶 channels, respectively.𝐻 and𝑊 denote the height and

width of the feature maps. 𝛾 (𝐵) and 𝛽 (𝐵) are scaling parameters

learned during training. Note that 𝜇 (𝐵) and 𝜎 (𝐵) are the approxi-
mated global mean and standard deviation of the current training

domain, which mainly causes BN’s domain dependence.

BN’s limitations for LReID tasks. BN assumes and requires that

all testing images are subject to the same training distribution.

Considering the evaluative criteria of LReID tasks, however, this

assumption is satisfied only when evaluating on current domain,

omitting intra-domain distribution discrepancies (e.g., the distribu-

tion shift between train-test splits and distribution gaps caused by

different cameras[42]). Thus, BN’s limitations in LReID tasks are

two-fold: 1) in testing, BN’s standardization often fails to generalise

on unseen domains, since the unseen domains usually subject to

entirely different distribution; 2) when evaluating the model’s less-

forgetting ability, BN is prone to a domain-specific normalization

so that the normalized features extracted from previous domains

suffer from significant domain shifts. This limitation further aggra-

vates catastrophic forgetting, due to the fixed statistics of BN in

testing.

3 PROPOSED METHOD

Given a stream of domains D = {𝐷𝑡 }𝑇𝑡=1, LReID model is required

to continually learn 𝑇 domains. The dataset of the 𝑡-th domain

is represented as 𝐷 (𝑡 ) = {𝐷𝑡𝑡𝑟 , 𝐷𝑡𝑡𝑒 }, where 𝐷𝑡𝑡𝑟 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁
𝑡
𝑡𝑟

𝑖=1
contains 𝑁 𝑡

𝑡𝑟 training images and their corresponding label set 𝑌 𝑡𝑡𝑟 ,
and 𝐷𝑡𝑡𝑒 indicates the testing set with 𝑌 𝑡𝑡𝑒 . The training and testing

classes are disjoint, i.e.,𝑌 𝑡𝑡𝑟 ∩𝑌 𝑡𝑡𝑒 = ). Note that, only𝐷𝑡𝑡𝑟 is available
at the 𝑡-th training step, and the data from previous domains are

not available any more, as shown in Fig. 2. For evaluation, we

test retrieval performance on all encountered domains with their

corresponding testing sets. In addition, the generalization ability is

evaluated via new and unseen domains 𝐷𝑢𝑛 with unseen identities

𝑌𝑢𝑛 . Henceforth, we will drop the subscript {𝑡𝑟, 𝑡𝑒} for simplifying

notation.

3.1 Balanced Knowledge Distillation

To mitigate catastrophic forgetting, we leverage knowledge distilla-

tion (KD) [19] to preserve knowledge learned on previous domains.

As person re-identification task is usually a long-tailed represen-

tation learning problem [20] with imbalanced data, we propose a

balanced knowledge distillation (BKD) loss L𝑏𝑘𝑑 to reinforce the

learned knowledge of tail classes which will be severely forgot-

ten during the lifelong learning process [13]. Specifically, given a

feature extractor ℎ
(
·;𝜃 𝑓 , 𝜙

)
with the normalization parameters 𝜙

and the convolutional parameters 𝜃 𝑓 , and a classifier 𝑔 (·;𝜃𝑐 ). The
probabilities generated from the old and new model are defined

as p𝑡−1 = 𝑔
(
ℎ
(
·;𝜃𝑡−1

𝑓
, 𝜙𝑡−1

)
;𝜃𝑡−1𝑐

)
and p

𝑡 = 𝑔
(
ℎ
(
·;𝜃𝑡

𝑓
, 𝜙𝑡

)
;𝜃𝑡𝑐

)
,

where 𝜃𝑡−1
𝑓

, 𝜙𝑡−1 and 𝜃𝑡−1𝑐 are copied from 𝜃𝑡
𝑓
, 𝜙𝑡 and 𝜃𝑡𝑐 before

current-step training, respectively. The proposed BKD loss is for-

mulated as:

L𝑏𝑘𝑑 = −
∑
𝑥∈𝐷𝑡

𝑚∑
𝑗=1

1 − 𝜋

1 − 𝜋𝑛 𝑗
p
𝑡−1
𝑗 (𝑥) log p𝑡𝑗 (𝑥) (2)

where 𝑛 𝑗 is the number of training images in the 𝑗-th class and

𝑚 =
∑𝑡−1
𝑖=1

���𝑌 (𝑖 )
��� is the number of the old classes. 𝜋 is a hyper-

parameter to control the re-balance strength. Moreover, we use

the commonly-used cross-entropy loss L𝑐 for learning on current

domain. Thus, the total objective of the proposed base-train stage

is:

L𝑏𝑎𝑠𝑒 (D𝑡 ;𝜃, 𝜙) = L𝑐 (D𝑡 ;𝜃, 𝜙) + 𝜆L𝑏𝑘𝑑 (D𝑡 ;𝜃, 𝜙), (3)

where 𝜆 is a trade-off factor for the knowledge distillation loss and

the cross-entropy loss. For a fair comparison, we set it to 1 in all of

our experiments.

3.2 Reconciliation Normalization

Based on the drawbacks expatiated in Sec. 2.2, we propose a sparse

mixture standardization and a additive rectified rescaling tomitigate

domain-specific dependence of BN.

Grouped Mixture Standardization (GMS). Inspired by DSON

[28], instance normalization (IN)[30] has the capability to remove

domain-specific characteristics and standardize the representations.

Nevertheless, since IN removes domain-specific information while

filtering out partial discriminative information, the model with only

INs struggles to learn and accumulate the ReID knowledge of the

current domainwell. To this end, we propose to learn an appropriate

coefficient for mixing instance and batch standardization instead of

their outputs. Considering the sparsity and the cost of additional

parameters, we group the mixed coefficients by reduction rate

of 𝐶𝑚 , denoted by 𝜙𝜌 ∈ ℝ𝐶/𝐶𝑚 , instead of channel-wise mixed

coefficients. Thus, our SMS is formulated as:

𝑥 = (1 − 𝜙𝜌 )
𝑥𝑖𝑛 − 𝜇 (𝐼 )√
𝜎2(𝐼 ) + 𝜖

+ 𝜙𝜌
𝑥𝑖𝑛 − 𝜇 (𝐵)√
𝜎2(𝐵) + 𝜖

, (4)
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Figure 2: Left: LReID model is required to continually learning on a steam of domains and generalise on unseen domains.

For each step, only the current-domain data are available. Right: illustration of our MRN. General and meta parameters are

optimized alternatively.

where 𝑥 is the feature standardized by the proposed SMS. 𝜇 (𝐼 ) and
𝜎 (𝐼 ) are the the channel-wise mean and standard deviation of the

input feature, respectively. 𝜌 is optimized to balance the domain-

dependent factors caused by BNs and the domain-independent

factors drawn from instances themselves. Ideally, based on an opti-

mal trade-off, the data from the current, previous and even unseen

domains should be effectively standardized. With less bias caused

by domain shifts, the model is encouraged to learn more general

knowledge to generalise on any domains well. Note that unlike

MBIN [3] that optimizes a combination of the outputs of BN and IN,

we balance two statistics in standardization to avoid to introduce

the IN’s rescaling parameters, which still tend to be dominated by

domain dependence.

Additive Rectified Rescaling (ARR). Despite the proposed

SMS with less domain dependence, the conventional rescaling pa-

rameters still have a high risk to over-fit on current training domain,

especially for top layers as shown in Fig. 1. Hence, we propose a

new ARR to learn to rectify the learned rescaling parameters based

on the domain-independent statistics (DIS) and domain-dependent

statistics (DDS). Specifically, MR first associates DIS and DDS by

an associative encoder parameterized by 𝜙𝑒 , then modeling the

relationship between standardization and rescaling processes, and

finally producing the rectified factors 𝛾 (𝐴) and 𝛽 (𝐴) by two de-

coders 𝜙𝛾 and 𝜙𝛽 , respectively. The proposed ARR is formulated

as:

𝑥𝑜𝑢𝑡 = (𝛾 (𝐵) + 𝛾 (𝐴) )𝑥 + (𝛽 (𝐵) + 𝛽 (𝐴) ),
𝛽 (𝐴) = 𝜙𝛽 (𝜙𝑒 (A(𝜇 (𝐵) , 𝜇 (𝐼 ) ))), (5)

𝛾 (𝐴) = 𝜙𝛾 (𝜙𝑒 (A(𝜎 (𝐵) , 𝜎 (𝐼 ) )),

where A is an associative function. Based on experiential explo-

ration in Tab. 3, we choose subtraction function in all the experi-

ments. Similar to the grouped standardization, we first group sta-

tistics by a reduction rate of 𝐶𝑠 , and then embed them into 𝐶/𝐶𝑒 -
dimensional subspace. Then, ARR infers the rectified factors from

the relationship between DIS and DDS. By summing the conven-

tional scaling parameters and rectified factors, we use the rectified

scaling parameters to recover the representation capability. This

brings two benefits: 1) when testing on unseen domains, the model

can perform an instance-aware normalization with less domain

dependence, which significantly improves generalization ability; 2)

the learned features are more general and can be shared across mul-

tiple previously-training domains, which allows models to change

less over training domains, so as to alleviate catastrophic forgetting.

3.3 Meta Reconciliation Normalization

To discover common knowledge in the context of domain-incremental

LReID, we propose a meta-learning framework to mine and opti-

mize the meta-knowledge from both old and new domains. Combin-

ing this idea with the proposed RN, we further propose a meta RN

(MRN) that learns to normalize features based on different instances

and better reconcile the dual objectives in the SPD [29].

The main idea of our meta-learning framework is to simulate

when learning on the new domain, how model can keep the distri-

butional consistence between old and new knowledge. By doing

so, the model can forget old knowledge less while facilitating to

learn more common knowledge from new domains. Considering

the computational efficiency of meta optimization, we find that

fine-tuning only partial parameters in MRN by meta gradients

(i.e., second-order gradients) achieves considerable performance

gain. Specifically, we denote these parameters as meta parameters

𝜙 = {𝜙𝜌 , 𝜙𝑒 , 𝜙𝛾 , 𝜙𝛽 }, as illustrated in Fig. 2. As summarized in Al-

gorithm 1, when starting with an incremental training step, the

training procedure in an iteration includes base-train, meta-train

and meta-test stage.

Base-train: we update all parameters except for the meta parame-

ters 𝜙 and sample a class-balanced mini-batch 𝐷𝑏𝑎𝑠𝑒 from current

domain 𝐷𝑡 according to their identities. The L𝑏𝑎𝑠𝑒 in Eq. (3) is used

for updating the general parameters in backbone network and the

classifier optimized by SGD with the learning rate 𝛼𝑏𝑎𝑠𝑒 .
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Algorithm 1: Meta Reconciliation Normalization

Input:Model Parameters 𝜃 = {𝜃 𝑓 , 𝜃𝑐 }, Meta Parameters

𝜙 = {𝜙𝑒 , 𝜙𝛾 , 𝜙𝛽 , 𝜙𝜌 }, Multiple Domain Data {D},
learning rate 𝛼 = {𝛼𝑏𝑎𝑠𝑒 , 𝛼𝑚𝑡𝑟 , 𝛼𝑚𝑡𝑒 }

. Output: 𝜃, 𝜙
for 𝑡 = 1 in total_domains do

if 𝑡 == 1 then

for 𝑖 = 1 in domain_iterations do

Sample mini-batch D𝑏𝑎𝑠𝑒 from D𝑡 ;

Base-train:; // Eq. (3)

𝜃 ← 𝜃 − 𝛼𝑏𝑎𝑠𝑒Δ𝜃L𝑏𝑎𝑠𝑒 (D𝑏𝑎𝑠𝑒 ;𝜃, 𝜙);
𝜙 ← 𝜙 − 𝛼𝑏𝑎𝑠𝑒Δ𝜙L𝑏𝑎𝑠𝑒 (D𝑏𝑎𝑠𝑒 ;𝜃, 𝜙);

end

else

for 𝑖 = 1 in domain_iterations do

Sample D𝑏𝑎𝑠𝑒 ,D𝑚𝑡𝑟 ,D𝑚𝑡𝑒 from D𝑡 ;

Base-train:; // Eq. (3)

𝜃 ← 𝜃 − 𝛼𝑏𝑎𝑠𝑒Δ𝜃L𝑏𝑎𝑠𝑒 (D𝑏𝑎𝑠𝑒 ;𝜃, 𝜙);
Meta-train:; // Eq. (6)

𝜙 ′ = 𝜙 − 𝛼𝑚𝑡𝑟Δ𝜙L𝑚𝑡𝑟 (D𝑚𝑡𝑟 ;𝜃, 𝜙);
Meta-test:; // Eq. (9)

𝜙 ← 𝜙 − 𝛼𝑚𝑡𝑒Δ𝜙L𝑚𝑡𝑒 (D𝑚𝑡𝑟 ;𝜃, 𝜙
′);

end

end

end

Meta-train: This stage is to simulate the scenario where the meta

parameters are optimized toward fitting only new knowledge. We

first sample a mini-batch 𝐷𝑚𝑡𝑟 randomly from current domain 𝐷𝑡 ,
then use theL𝑐 loss as meta-train loss to guild MRNs to learning on

only new knowledge, and finally inner-update the meta parameters

from 𝜙 to 𝜙 ′:

L𝑚𝑡𝑟 (D𝑚𝑡𝑟 ;𝜃, 𝜙) = L𝑐 (D𝑚𝑡𝑟 ;𝜃, 𝜙), (6)

𝜙 ′ = 𝜙 − 𝛼𝑚𝑡𝑟Δ𝜙L𝑚𝑡𝑟 (D𝑚𝑡𝑟 ;𝜃, 𝜙). (7)

Meta-test: After updating the meta parameters in the inner-level

optimization step, we next examine MRNs on a new mini-batch

𝐷𝑚𝑡𝑒 drawn from 𝐷𝑡 . In this step, the MRNs are required to ensure

the learned knowledge in last step is common and beneficial for

both new and old knowledge. Furthermore, motivated by that sparse

neural activation is a key mechanism to summarize and consolidate

knowledge in human cognitive processes [4, 32], we encourage the

model to learn refined knowledge or sparse knowledge so as to

effectively generalize on new scenarios. Thus, we employ sparse

constraints L𝑠 and the BKD loss in Eq. (2) with the updated meta

parameters 𝜙 ′ for meta-test:

L𝑠 =
1

𝐿

𝐿∑
𝑙=1

���𝜙 ′𝑙𝜌
���
1

𝐶𝑙/𝐶𝑙𝑚
, (8)

L𝑚𝑡𝑒 (D𝑚𝑡𝑒 ;𝜃, 𝜙
′) = L𝑏𝑘𝑑 (D𝑚𝑡𝑒 ;𝜃, 𝜙

′) + 𝜆𝑠L𝑠 , (9)

𝜙 ← 𝜙 − 𝛼𝑚𝑡𝑒Δ𝜙L𝑚𝑡𝑒 (D𝑚𝑡𝑟 ;𝜃, 𝜙
′), (10)

where 𝐿 is the number of norm layers and 𝜆𝑠 is a weight factor

for the sparse objective. By using Eq. (10), we meta-update the

Table 1: The comparison in terms of the number of identities

between balanced and imbalanced setting in LReID-Seen

datasets.

LReID-Seen Abbr.
The Number of Training Identities
Balanced Imbalanced

Market-1501[39] MA 500 751
CUHK-SYSU LReID[36] SY 500 5532

MSMT17_V2 [33] MS 500 1041
CUHK03[18] CU 500 767

meta parameters to overcome the incomplete optimization in the

meta-train simulation. Eventually, our MRN is optimized to be an

approximated domain-independent normalization by the significant

second-order gradients.

Analysis: Apart from the inspiration from computational neuro-

science [5], we further analyze the reason why meta-learning can

reconcile these two different objective functions. Along a similar

vein [15], we derive the first-order Taylor expansion for the final

objective of meta-train and meta-test meanwhile omitting 𝜃 that

are constants in meta-optimization:

L𝑚𝑡𝑒 (𝜙−𝛼𝑚𝑡𝑒Δ𝜙L𝑚𝑡𝑟 (𝜙)) =
L𝑚𝑡𝑒 (𝜙) − 𝛼𝑚𝑡𝑒Δ𝜙L𝑚𝑡𝑟 (𝜙) · Δ𝜙L𝑚𝑡𝑒 (𝜙)︸�����������������������������������︷︷�����������������������������������︸

Reconciliation Term

, (11)

where the second term in Eq. (11) is a dot product of Δ𝜙L𝑚𝑡𝑟 (𝜙)
and Δ𝜙L𝑚𝑡𝑒 (𝜙). In this paper, we call it reconciliation term (RT).

Whenminimizing the above objective, the RT is expected to become

large. Though Δ𝜙L𝑚𝑡𝑟 (𝜙) and Δ𝜙L𝑚𝑡𝑒 (𝜙) are not normalized,

the dot product is still larger if these vectors/gradients are in a

similar direction. Then, the similar direction means the direction of

optimization on both non-forgetting old knowledge and learning

new knowledge is similar. Thus, the overall objective can minimize

both two objectives meanwhile keeping their gradient descents in

a reconciled way. In contrast to the conventional optimization in

Eq. (3) that is not constrained by RT, the meta optimizer trends to

updates to weights in which the two optimization surfaces agree

on the gradient. It reduces over-fitting to ether remembering old

knowledge or learning new knowledge by finding a optimization

path to minimization in which both objectives approximately are

consistent on the direction at all points along the path.

As a consequence, the advantages of MRN can be summarized

as two-fold: 1) we experimentally demonstrate that the learned

features with less domain dependence realize a dramatic improve-

ment of generalization ability and mitigate forgetting problem by a

considerable degree; 2) since the base-train and the meta train-test

stage are alternately executed, this endows our MRN to adaptively

rectify the way of normalization under variational training distri-

butions caused by not only the domain shift but also the instability

in the early stage of incremental training.

4 EXPERIMENTS

4.1 Implementation Details

We remove the classifier of ResNet-50 and use the retained layers

as a feature extractor. The feature dimension is 2,048, and the batch
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Table 2: Lifelong ReID evaluation on balanced and imbalanced protocols. We test the model after sequentially training on four

seen domains. The reported results are reproduced in our setting by using their official codes. “Meta.” denotes optimizing by

meta objective.

Training Order MA SY MS CU Average Seen ↑ Average FR (%)↓ Average Unseen ↑
Protocol Method Replay Meta. mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 𝛿 (mAP) 𝛿 (R-1) mAP R-1

Balanced
[26]

SFT 18.9 40.8 59.7 62.8 2.0 6.0 56.2 60.1 34.2 42.4 47.4 40.9 43.5 40.1

LwF[19] 45.3 67.7 74.0 77.7 3.8 11.3 28.1 27.6 37.9 46.1 27.1 20.9 44.2 41.4

iCaRL[27]
√

42.7 65.2 66.7 69.6 3.7 10.4 34.6 36.5 36.9 45.4 34.2 28.2 37.0 33.2

DER++[2] with BN[11]
√

38.9 60.8 68.2 71.9 4.2 11.1 41.0 42.8 38.1 46.7 35.2 29.1 40.6 36.8

- with CN[25]
√

48.4 70.5 70.2 73.1 6.6 18.6 39.8 41.6 41.3 51.0 29.4 23.1 42.6 39.0

AKA[26] with BN[11] 44.4 67.7 73.8 79.8 4.1 11.8 33.9 34.0 39.1 48.3 28.2 22.4 46.5 43.1

- with DN[12] 52.5 78.0 69.9 72.9 9.2 25.7 33.1 33.4 41.2 52.5 15.7 9.6 45.6 41.2

- with BIN[22] 56.2 78.9 78.9 81.1 14.2 34.4 37.2 37.9 46.6 58.1 14.6 9.4 54.6 51.0

- with CN[25] 56.9 78.4 78.2 83.9 10.4 26.6 32.9 32.1 44.6 55.3 16.0 11.7 49.9 46.0

- with RN(Ours) 55.1 78.5 78.5 80.7 14.2 35.1 37.5 37.9 46.3 58.1 13.8 8.9 54.3 51.0

AKA[26] with MBIN[3]
√

54.7 78.2 78.4 80.1 13.6 32.8 40.3 40.4 46.8 57.9 12.7 10.4 53.5 49.7

- with MRN(Ours)
√

57.6 80.6 77.5 79.8 16.5 39.9 42.9 43.7 48.6 61.0 11.9 6.6 56.1 52.7

Imbalanced
(Ours)

SFT 25.2 49.1 68.0 71.5 13.5 10.7 67.6 70.6 41.1 50.5 46.2 38.1 52.6 48.9

LwF[19] 51.7 72.8 77.9 80.8 4.9 13.6 34.1 34.1 42.2 50.3 25.9 19.9 50.6 47.5

iCaRL[27]
√

59.8 78.0 88.0 89.4 11.5 25.0 52.2 53.4 52.9 61.5 23.5 18.5 59.2 54.3

DER++[2] with BN[11]
√

60.4 79.2 88.9 90.5 14.2 30.0 39.5 39.5 50.8 59.8 21.9 16.4 62.6 58.1

- with CN[25]
√

64.0 82.0 88.5 90.2 15.0 33.1 39.5 39.5 51.8 61.2 19.3 13.8 62.7 58.4

AKA[26] with BN[11] 50.7 71.3 76.8 79.8 4.8 13.5 39.5 39.5 43.0 51.0 28.7 22.1 49.4 48.4

- with DN[12] 64.2 82.8 81.6 83.9 11.5 28.4 38.0 38.4 48.8 58.4 16.7 11.8 53.4 49.0

- with BIN[22] 64.8 84.2 82.7 80.7 15.4 33.8 40.0 40.0 50.7 59.7 13.7 10.8 55.7 52.4

- with CN[25] 62.0 83.6 77.5 79.9 12.2 31.1 37.3 37.4 47.3 58.0 12.2 7.7 54.3 50.6

- with RN(Ours) 63.2 83.4 81.7 84.2 14.2 34.3 39.8 39.2 49.7 60.3 14.3 9.2 57.5 53.6

AKA[26] with MBIN[3]
√

65.5 84.9 83.5 85.8 14.1 36.1 44.4 44.8 51.9 63.0 16.7 9.6 58.0 53.9

- with MRN(Ours)
√

67.2 85.7 84.7 86.7 18.3 41.8 42.9 43.7 53.3 64.5 10.5 6.2 60.6 56.8

Figure 3: The trend of forgetting rate on different setting. Left: visualization of the forgetting rate of mAP and R-1 score on

balanced setting. Right: visualization of forgetting rate of mAP and R-1 score on imbalanced setting. The models are trained

following Order-1.

size is 32. We randomly select 8 identities and sample 4 images

for each identity to form a class-balanced mini-batch. All images

are resized to 256 × 128. The shared encoder is a fully-connected

layer followed by a h-swish [10] activation function. The 𝜙𝛾 and

𝜙𝛽 are implemented by a fully-connected layer followed by a hard-

sigmoid [10] function and Tanh function, respectively. To balance

computational cost and performance, we set the reduction rate,

𝐶𝑚 = 2, 𝐶𝑠 = 16 and 𝐶𝑒 = 16, for mixture coefficients, grouped

statistics and associative embeddings, respectively. If the embedding

dimension is smaller than 2, then the embedding dimension is set to

2. Following the popular person ReID training strategy, we train the

model for 50 epochs, and decrease the learning rate by × 0.1 at the

25𝑡ℎ and 35𝑡ℎ epoch. The learning rates 𝛼𝑏𝑎𝑠𝑒 , 𝛼𝑚𝑡𝑟 and 𝛼𝑚𝑡𝑒 are
set to 1.75×10−4, 1×10−2 and 1×10−2, respectively. We follow [26]

to set the trade-off factor 𝜆 as 1 and fix the intensity of rebalance 𝜋
and sparsity 𝜆𝑠 to 0.999 and 0.1 in all experiments.

4.2 Evaluation Protocols for LReID

Considering that the scale of each dataset varies largely in the wild,

we follow the official codes of the authors of [26] to conduct exper-

iments under both balanced and imbalanced evaluation protocols.

Instead of randomly choosing a unified amount of identities in each

domain [26], in imbalanced protocol the model is trained on each

complete dataset regarded as a long-tail dataset. [20].

Balanced LReID-Seen: note that since theDukeMTMC-reID dataset

[40] has been withdrawn by the authors, we do not follow previous

lifelong ReID benchmarks [26, 35]. Instead, we select four large-

scale datasets: MA [39], SY [36], MS [33], and CU [18], and randomly

sample 500 identities from each dataset. This results in the balanced
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Figure 4: The trend of generalising performance on different settings. Left: visualization of the mAP and R-1 score on balanced

setting. Right: visualization of the mAP and R-1 score on imbalanced setting. The models are trained by following Order-1.

LReID training set that includes 2,000 identities. We follow the train-

test protocol of SY in [26] and sample the identities that include at

least 4 images for training.

Imbalanced LReID-Seen: different from the balanced LReID-Seen

set that randomly chooses a unified amount of identities in each

domain [26], in imbalanced protocol the model is trained on each

complete dataset. Consequently, 65,637 images of the 8,091 iden-

tities are employed for the imbalanced LReID training set. Note

different from the train-test protocol of SY in [26], we reorganize

this dataset but use all available identities for training instead of

sampling a subset, called CUHK-SYSU LReID in Tab. 1.

LReID-Unseen: Note that the generalization evaluation are same

in both balance and imbalance protocols. Specifically, we follow [26]

to test models on the combination of the testing sets of seven ReID

datasets, VIPeR [7], PRID [9], GRID [21], i-LIDS [34], CUHK01 [17],

CUHK02 [16] and SenseReID [38].

TrainingOrder: we randomly selectOrder-1 (MA→SY→MS→CU)

as the primary training order and show the experimental results in

Sec. 4.3. Moreover, we explore more training orders in Appendix C.

Evaluation metrics. In LReID experiments, we use mean aver-

age precision (mAP) and rank-1 (R-1) accuracy to evaluate the

performance. Moreover, we adapt forgetting rate 𝛿𝑡𝑠 on the 𝑠-th
seen domains after the 𝑡-th training step, to measure the degree of

forgetting. The forgetting rate (FR) is:

𝛿𝑡𝑠 (𝑎) =
max𝑘∈{1,· · · ,𝑡−1} 𝑎𝑘,𝑠 − 𝑎𝑡,𝑠

max𝑘∈{1,· · · ,𝑡 } 𝑎𝑙,𝑠
, ∀𝑠 < 𝑡, (12)

where 𝑎 is mAP or R-1. We calculate the average 𝛿 over on the seen

domain to get a comprehensive evaluative criteria.

4.3 Comparative results of LReID Evaluation

We compare our MRN against several state-of-the-art methods,

including three groups: 1) conventional lifelong learning methods,

e.g., sequential fine-tune (SFT), LwF [19], iCaRL [27], and Dark Ex-

perience Replay++ (DER++) [2] and its variants with continual nor-

malization (CN) [25]; 2) very recent LReID methods, AKA [26] and

its variants with different normalization layers, e.g., DN [12] and

BIN [22]; 3) a meta-learning based domain generalization method,

MBIN [3]. For a reasonable comparison, we employ the norm layers

in the MBIN but optimize these layers by our meta objective since

the original objective of MBIN impractically requires accessing

multi-domain data at once.

Seen-domain Non-forgetting Evaluation: 1) compared with the

conventional lifelong methods, MRN ranks first in both balanced

and imbalanced settings and even outperforms DER++, which is a

strong replay-based method; 2) in AKA-based comparison, MRN

outperforms BN by 12.7% in R-1 of balanced setting and 13.5% in

R-1 of imbalanced setting; 3) although MIBN optimized by our

meta-optimization objective gets competitive results, MRN still

outperforms MIBN on FR by a margin of 3.4%, due to our designs

specific for preventing forgetting.

Unseen-domain Generalising Evaluation: 1) owing to storing

the data of previous domains, the replay-based methods have supe-

rior performances on generalising evaluation since the models are

trained by large-scale and diverse data during the whole lifelong

training process. Even so, MRN ranks the first in balanced setting

on generalising test; 2) in AKA-based comparison, MRN outper-

forms BN by 9.6% in mAP of balanced setting and 11.2% in mAP

of imbalanced setting; 3) compared with MBIN, MRN shows better

ability to generalize on unseen domains in both settings, due to our

instance-aware normalization mechanism.

Balanced & Imbalanced: 1) from the results of SFT and LwF in

both settings, we find they are unstable when training on a larger-

scale dataset, especially in the imbalanced setting, which indicates

our imbalanced setting is more challenging; 2) the replay-based

methods benefit from their exemplar sampling strategy, which is

favorable for handling the imbalanced setting. 3) since a lengthy

training epoch leads learnable knowledge graph to be over-fitting,

AKA cannot effectively preserve seen-domain knowledge, so that

AKA’s performance degrades to the same level as LwF in the im-

balanced setting. Surprisingly, by replacing BN with our RN, this

drawback is improved to some extent.

Exemplar Replay & Replay-Free: although “DER++ with CN”

in Tab. 2 stores old data to replay in order to mitigate catastrophic

forgetting, our MRN is superior to it by 2.5% on average mAP and

8.8% on average FR of seen domains, without accessing to any

previous data. Note that replay-based methods tend to perform

well on SY dataset. This is because most identities in SY have few

instances and storing exemplars for each identity is almost equal

to store the whole dataset. Moreover, maintaining a memory buffer

is expensive and impractical in LReID due to privacy policy.
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Table 3: Evaluation of the proposed components. The ef-

fectiveness is verified in imbalanced LReID setting. “Meta.”

denotes optimizing by meta objective.

Evaluation Average FR (%) Average Unseen

Configuration 𝛿 (mAP) ↓ 𝛿 (R-1) ↓ mAP↑ R-1↑
AKA with KD 28.6 24.5 49.3 48.2

AKA with BKD 26.7 22.1 49.4 48.4

w/o Meta. & ARR 13.7 10.8 55.7 52.4

w/o Meta. & GMS 21.1 14.2 52.5 51.3

w/o Meta. 14.3 9.2 57.7 53.6

w/o L𝑠 11.4 6.9 59.8 56.0

Full (AKA with MRN) 10.5 6.2 60.6 56.8

Table 4: Selection of hyper-parameters and the comparison

of our MRN and MBIN[3] in imbalanced LReID setting. “Po-

sition” denotes the index of the layers in ResNet-50. “[·, ·]”
indicates concatenation operation.

Associative Function A 𝛿 (mAP) ↓ mAP↑
𝜇𝐼 − 𝜇𝐵, 𝜎𝐼 − 𝜎𝐵 10.5 60.6

𝜇𝐼 /𝜇𝐵, 𝜎𝐼 /𝜎𝐵 12.3 58.9

[𝜇𝐼 , 𝜇𝐵], [𝜎𝐼 , 𝜎𝐵] 10.9 60.4

Normalization Position #Parameter 𝛿 (mAP) ↓ mAP↑
BN 1,2,3,4,5 25,557.0k 26.7 49.4

MBIN[3]

1,2,3,4,5 +79.7k 16.7 58.0

5 +33.8k 20.0 56.0

4,5 +64.5k 18.9 57.2

1,5 +34.0k 18.3 56.8

MRN

1,2,3,4,5 +48.4k 10.5 60.6

5 +24.7k 13.8 58.4

4,5 +41.5k 11.3 59.9

1,5 +24.8k 13.7 58.6

4.4 Ablation Study

We conduct three groups of ablation experiments to study the

effectiveness of our method: 1) the first group is to verify the im-

provement of the designed RN and meta-learning optimization.

Analysing the performances of “w/o ARR.” and “w/o Meta. & GMS”

in Tab. 3, we find both ARR and GMS modules improve the model’s

capabilities in a complimentary way. Moreover, the performances

of “w/o Meta.” and “Full” demonstrate the meta-learning optimiza-

tion further enhances the model’s ability to prevent forgetting and

generalise on the unseen domains, simultaneously; 2) as shown

in Tab. 4, the second group is to experimentally select associative

function in Sec. 3.2. The results show that the subtraction function

is better than other solutions; 3) the last group is to explore the

impact of the position in which we replace original batch normaliza-

tion layers in ResNet-50 by MBINs or MRNs. Specifically, “1,2,3,4,5”

denotes that we replace all the 53 BNs included in five convolu-

tional layers of ResNet-50. The results demonstrate our MRN is a

lightweight design compared to MBIN and replacing the BN in top

and bottom blocks with MRN can obtain considerable performance

gains with negligible overhead.

5 DISCUSSIONS AND LIMITATIONS

In this section, we discuss the advantages and limitations of our

proposed methods by the following questions:

Figure 5: Visualization of mixture coefficients. The coeffi-

cients in Layer-1 have higher means than these in Layer-5.

The top layers tend to IN’s statistics, in order to achieve do-

main independence.

Q1: Is it feasible to meta-optimise all the network parameters? We

assume the knowledge of ReID (e.g., extracting areas of interest or

objects, matching patterns and abstracting features) is contained in

the weights of convolutional layers, while the normalization layer

handles training noise (e.g., distribution shift, gradient vanishing

and outliers). In LReID models, it is reasonable to regard the pa-

rameters of normalization layers as meta parameters. Moreover,

optimising all parameters by meta gradients may be too computa-

tionally expensive when training large-scale models, even using

first-order approximations [6] in meta-optimization. Thus, we think

applying our meta-optimization to whole network is inefficient.

Q2: What can the MRN benefit from meta optimization? We summa-

rize the advantages from two aspects. 1) we visualize the learned

mixture parameters in Fig. 5. Compared to BIN without meta opti-

mization, MRN’s mixture parameters have a larger variance, which

increases the diversity of different feature channels. This enables

the model to learn more common knowledge so as to acquire a

better ability to generalize on the seen and unseen domains; 2)

without the constraint of reconciliation term derived in Eq. (11),

the model lacks informative second-order gradients, tending to a

worse optimization. Hence, our MRN can mitigate the SPD.

6 CONCLUSION

In this paper, we proposed a new method named meta reconcilia-

tion normalization (MRN) and applied it to the LReID task, which is

able to continuously learn more common knowledge with less do-

main dependency. Furthermore, to alleviate the stability-plasticity

dilemma, we designed a meta-learning framework, allowing MRN

to imitate the hippocampus in human brain and learn synaptic

plasticity. It reconciles the knowledge interference between old and

new tasks, so as to accomplish an effective knowledge transfer to

learn well on new domains while mitigating catastrophic forgetting

on old domains. Extensive experiments showed that our method

outperforms other competitors on LReID tasks.
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