10 research outputs found

    Transport and spectral properties of magic-angle twisted bilayer graphene junctions based on local orbital models

    Full text link
    The electronic properties of junctions defined electrostatically on twisted bilayer graphene can be addressed theoretically using lattice models. Recent works have introduced minimal local orbital models to describe twisted bilayer graphene at the magic angle (MATBLG) with different degrees of approximation and accounting for fragile topology. Based on these models and using Green's function techniques we analyze in this work the spectral and transport properties for MATBLG defined along different types of edges. To this end we first study the effect of symmetry breaking perturbations on the bulk bands, identifying their topological character. In a second step we obtain results for the local spectral densities at open boundaries and for two terminal transport on a three region junction where one could control independently the central and lateral regions doping level. Due to the large moiré length we observe that the hybridization of chiral edge states on these junctions gives rise to a signature in the longitudinal transport and to asymmetries in the local densities of states. We further show that these properties are extremely sensitive to the orientation of the junctions along the moiré lattic

    Inductive microwave response of Yu-Shiba-Rusinov states

    Full text link
    We calculate the frequency-dependent admittance of a phase-biased Josephson junction spanning a magnetic impurity or a spinful Coulomb-blockaded quantum dot. The local magnetic moment gives rise to Yu-Shiba-Rusinov bound states, which govern the subgap absorption as well as the inductive response. We model the system by a superconducting spin-polarized exchange-cotunnel junction and calculate the linear current response to an ac bias voltage, including its dependence on phase bias as well as particle-hole and source-drain coupling asymmetry. The corresponding inductive admittance is analyzed and compared to results of a zero bandwidth, as well as an infinite-gap approximation to the superconducting Anderson model. All three approaches capture the interaction-induced 0-π transition, which is reflected as a discontinuity in the adiabatic inductive respons

    Spin coherent manipulation in Josephson weak links

    Full text link
    Novel designs of Josephson weak links based on semiconducting nanowires combined with circuit QED techniques have enabled the resolution of their fine structure due to spin-orbit interactions, opening a path towards Andreev spin qubits. Nevertheless, direct manipulation of the spin within a given Andreev state is in general suppressed compared to interdoublet manipulation in the absence of Zeeman effects. In addition, noisy spin-flip mechanisms limit any coherent manipulation protocol to spin postselection. We propose a combination of a spin polarization protocol analogous to sideband cooling with stimulated Raman adiabatic passage specifically tailored for these systems. We show this approach is robust for a large range of design parameters, including the currently rather stringent coherence time

    Nonlocal quantum heat engines made of hybrid superconducting devices

    Full text link
    We discuss a quantum thermal machine that generates power from a thermally driven double quantum dot coupled to normal and superconducting reservoirs. Energy exchange between the dots is mediated by electron-electron interactions. We can distinguish three main mechanisms within the device operation modes. In the Andreev tunneling regime, energy flows in the presence of coherent superposition of zero- and two-particle states. Despite the intrinsic electron-hole symmetry of Andreev processes, we find that the heat engine efficiency increases with increasing coupling to the superconducting reservoir. The second mechanism occurs in the regime of quasiparticle transport. Here we obtain large efficiencies due to the presence of the superconducting gap and the strong energy dependence of the electronic density of states around the gap edges. Finally, in the third regime there exists a competition between Andreev processes and quasiparticle tunneling. Altogether, our results emphasize the importance of both pair tunneling and structured band spectrum for an accurate characterization of the heat engine properties in normal-superconducting coupled dot system

    Fluxoid-induced pairing suppression and near-zero modes in quantum dots coupled to full-shell nanowires

    Full text link
    We analyze the subgap excitations and phase diagram of a quantum dot (QD) coupled to a semiconducting nanowire fully wrapped by a superconducting (S) shell. We take into account how a Little-Parks (LP) pairing fluxoid (a winding in the S phase around the shell) influences the proximity effect on the dot. We find that under axially symmetric QD-S coupling, shell fluxoids cause the induced pairing to vanish, producing instead a level renormalization that pushes subgap levels closer to zero energy and flattens fermionic parity crossings as the coupling strength increases. This fluxoid-induced stabilization mechanism has analoges in symmetric S-QD-S Josephson junctions at phase π, and can naturally lead to patterns of near-zero modes weakly dispersing with parameters in all but the zeroth lobe of the LP spectru

    Fluxoid-induced pairing suppression and near-zero modes in quantum dots coupled to full-shell nanowires

    Full text link
    We analyze the subgap excitations and phase diagram of a quantum dot (QD) coupled to a semiconducting nanowire fully wrapped by a superconducting (S) shell. We take into account how a Little-Parks (LP) pairing fluxoid (a winding in the S phase around the shell) influences the proximity effect on the dot. We find that under axially symmetric QD-S coupling, shell fluxoids cause the induced pairing to vanish, producing instead a level renormalization that pushes subgap levels closer to zero energy and flattens fermionic parity crossings as the coupling strength increases. This fluxoid-induced stabilization mechanism has analoges in symmetric S-QD-S Josephson junctions at phase π, and can naturally lead to patterns of near-zero modes weakly dispersing with parameters in all but the zeroth lobe of the LP spectru

    Joule spectroscopy of hybrid superconductor–semiconductor nanodevices

    Full text link
    Hybrid superconductor-semiconductor devices offer highly tunable platforms, potentially suitable for quantum technology applications, that have been intensively studied in the past decade. Here we establish that measurements of the superconductor-to-normal transition originating from Joule heating provide a powerful spectroscopical tool to characterize such hybrid devices. Concretely, we apply this technique to junctions in full-shell Al-InAs nanowires in the Little-Parks regime and obtain detailed information of each lead independently and in a single measurement, including differences in the superconducting coherence lengths of the leads, inhomogeneous covering of the epitaxial shell, and the inverse superconducting proximity effect; all-in-all constituting a unique fingerprint of each device with applications in the interpretation of low-bias data, the optimization of device geometries, and the uncovering of disorder in these systems. Besides the practical uses, our work also underscores the importance of heating in hybrid devices, an effect that is often overlookedWe acknowledge funding by EU through the European Research Council (ERC) Starting Grant agreement 716559 (TOPOQDot), the FET-Open contract AndQC, by the Danish National Research Foundation, Inno vation Fund Denmark, the Carlsberg Foundation, and by the Spanish AEI through Grant No. PID2020-117671GB-I00 and through the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018- 000805-M) and the ”Ramón y Cajal” programme grant RYC 2015-1797

    Direct transport between superconducting subgap states in a double quantum dot

    Full text link
    We demonstrate direct transport between two opposing sets of Yu-Shiba-Rusinov (YSR) subgap states realized in a double quantum dot. This bound-state-to-bound-state transport relies on intrinsic quasiparticle relaxation, and the tunable gating of this quantum dot device allows us to explore also an additional relaxation mechanism based on charge transferring Andreev reflections. The transition between these two relaxation regimes is identified in the experiment as a marked gate-induced stepwise change in conductance. We present a transport calculation, including YSR bound states and multiple Andreev reflections alongside quasiparticle relaxation, due to a weak tunnel coupling to a nearby normal metal, and obtain excellent agreement with the dat

    Signatures of interactions in the Andreev spectrum of nanowire Josephson junctions

    Full text link
    We performed microwave spectroscopy of an InAs nanowire between superconducting contacts implementing a finite-length, multichannel Josephson weak link. Certain features in the spectra, such as the splitting by spin-orbit interactions of the transition lines among Andreev states, have been already understood in terms of noninteracting models. However, we identify here additional transitions, which evidence the presence of Coulomb interactions. By combining experimental measurements and model calculations, we reach a qualitative understanding of these very rich Andreev spectr

    Spin-dependent tunneling between individual superconducting bound states

    No full text
    Magnetic impurities on superconductors induce discrete bound levels inside the superconducting gap, known as Yu-Shiba-Rusinov (YSR) states. YSR levels are fully spin polarized such that the tunneling between YSR states depends on their relative spin orientation. Here, we use scanning tunneling spectroscopy to resolve the spin dynamics in the tunneling process between two YSR states by experimentally extracting the angle between the spins. To this end, we exploit the ratio of thermally activated and direct spectral features in the measurement to directly extract the relative spin orientation between the two YSR states. We find freely rotating spins down to 7 mK, indicating a purely paramagnetic nature of the impurities. Such a noncollinear spin alignment is essential not only for producing Majorana bound states but also as an outlook manipulating and moving the Majorana state onto the tip.publishe
    corecore