20,931 research outputs found

    Measurement of transpiration in Pinus taeda L. and Liquidambar styraciflua L. in an environmental chamber using tritiated water

    Get PDF
    Transpiration rates of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.) were measured at two different atmospheric water vapor pressure deficits (V.P.D.) in a controlled environment growth chamber using tritiated water as a tracer. The trees were maintained in a sealed plant bed containing a hydroponic nutrient solution into which labeled water (spike) was introduced. Samples of leaves, chamber air, spiked nutrient solution and control water were assayed for ratio-activity using liquid scintillation techniques to determine transpiration rates. The transpiration rate of sweetgum in ml./hr./gm. (4.95) was found to be 5 times greater than that of loblolly pine (1.03) at 1.84 V.P.D. and 8 times greater at 6.74 V.P.D. (15.99 for sweetgum vs. 2.19 for pine). Transpiration (based on measurements of leaf radioactivity) in both species rose with increasing deficit; however sweetgum increased its output by 3 times while pine only doubled its rate. Cyclical changes in transpiration rates were noted in both species; the sweetgum cycle required a 6 hour interval whereas the pine cycle required a 9 hour interval

    Fe-doping-induced evolution of charge-orbital ordering in a bicritical-state manganite

    Full text link
    Impurity effects on the stability of a ferromagnetic metallic state in a bicritical-state manganite, (La0.7Pr0.3)0.65Ca0.35MnO3, on the verge of metal-insulator transition have been investigated by substituting a variety of transition-metal atoms for Mn ones. Among them, Fe doping exhibits the exceptional ability to dramatically decrease the ferromagnetic transition temperature. Systematic studies on the magnetotransport properties and x-ray diffraction for the Fe-doped crystals have revealed that charge-orbital ordering evolves down to low temperatures, which strongly suppresses the ferromagnetic metallic state. The observed glassy magnetic and transport properties as well as diffuse phase transition can be attributed to the phase-separated state where short-range charge-orbital-ordered clusters are embedded in the ferromagnetic metallic matrix. Such a behavior in the Fe-doped manganites form a marked contrast to the Cr-doping effects on charge-orbital-ordered manganites known as impurity-induced collapse of charge-orbital ordering.Comment: 8 pages, 7 figure

    Structural design options for the new 34 meter beam waveguide antenna

    Get PDF
    In addition to the successful network of 34 m High Efficiency antennas recently built by JPL, the Deep Space Network (DSN) is embarking on the construction of a 34 m high performance, research and development antenna with beam waveguide optics at the Venus site. The construction of this antenna presents many engineering challenges in the area of structural, mechanical, RF, and pointing system design. A set of functional and structural design requirements is outlined to guide analysts in the final configuration selection. Five design concepts are presented covering both the conventional center-fed beam optics as well as the nonconventional, by-pass beam configuration. The merits of each concept are discussed with an emphasis on obtaining a homologous design. The preliminary results of structural optimization efforts, currently in progress, are promising, indicating the feasibility of meeting, as a minimum, all X-band (8.4 GHz) requirements, with a goal towards meeting Ka-band (32 GHz) quality performance, at the present budget constraints

    Major Powers and Militarized Conflict

    Get PDF
    This article attempts to answer the question of why major powers engage in more active foreign policy behaviors than minor powers. It does so by comparing two explanations for the increased conflict propensity of major powers. The first explanation focuses on major powers’ observable capabilities, while the second stresses their different behavior. We incorporate both into an ultimatum model of conflict in which a state’s cost of conflict consists of both observable and behavioral components. Using data from the period from 1870 to 2001, we empirically illustrate the observable and behavioral differences between major and minor powers. We then utilize a decomposition model to assess the relative significance of the two explanations. The results suggest that most of the difference in conflict propensity between major and minor powers can be attributed to observable differences

    Anti-phase Modulation of Electron- and Hole-like States in Vortex Core of Bi2Sr2CaCu2Ox Probed by Scanning Tunneling Spectroscopy

    Full text link
    In the vortex core of slightly overdoped Bi2Sr2CaCu2Ox, the electron-like and hole-like states have been found to exhibit spatial modulations in anti-phase with each other along the Cu-O bonding direction. Some kind of one-dimensionality has been observed in the vortex core, and it is more clearly seen in differential conductance maps at lower biases below +-9 mV

    Wild Horses, Livestock, and Wildlife Use of Springs and Riparian Areas on the Devil\u27s Garden

    Get PDF
    In Modoc County, located in northeastern California there is a unique rangeland area heavily populated by wild horses and managed primarily by United States Forest Service known as the Devil\u27s Garden. Wild horses have significantly exceeded (4000 horses) appropriate management levels (206-402 horses) in recent years and expanded their range outside of the wild horse territory (258,000 acres) and on to private and tribal lands (over 450,000 acres). This increase has prompted concern about resource degradation particularly associated with riparian areas. In otherwise arid sage steppe rangelands, springs provide critical watering sources as well as wildlife habitat for sage grouse, deer, elk, pronghorn, and other wildlife. Our objective is to quantify the relative frequency, duration, and timing of use by horses, permitted livestock, and wildlife at spring locations. We correlate how varying levels of horse and/or livestock use affects spring site vegetation and riparian health standards. Ten representative study locations were selected on the Devil’s Garden and motion sensitive cameras were deployed at each location for 14-day sampling periods during the spring, summer and fall of 2015-2017. All photos were visually assessed to record species present, number of each species, and the time, date, and location of the observation. We present preliminary occupancy data, as well as results of corresponding vegetative cover, plant community, and bank alteration sampling. Implications for management and on-going research are discussed

    A theory for long-memory in supply and demand

    Get PDF
    Recent empirical studies have demonstrated long-memory in the signs of orders to buy or sell in financial markets [2, 19]. We show how this can be caused by delays in market clearing. Under the common practice of order splitting, large orders are broken up into pieces and executed incrementally. If the size of such large orders is power law distributed, this gives rise to power law decaying autocorrelations in the signs of executed orders. More specifically, we show that if the cumulative distribution of large orders of volume v is proportional to v to the power -alpha and the size of executed orders is constant, the autocorrelation of order signs as a function of the lag tau is asymptotically proportional to tau to the power -(alpha - 1). This is a long-memory process when alpha < 2. With a few caveats, this gives a good match to the data. A version of the model also shows long-memory fluctuations in order execution rates, which may be relevant for explaining the long-memory of price diffusion rates.Comment: 12 pages, 7 figure

    Exploring Foundations of Time-Independent Density Functional Theory for Excited-States

    Full text link
    Based on the work of Gorling and that of Levy and Nagy, density-functional formalism for many Fermionic excited-states is explored through a careful and rigorous analysis of the excited-state density to external potential mapping. It is shown that the knowledge of the ground-state density is a must to fix the mapping from an excited-state density to the external potential. This is the excited-state counterpart of the Hohenberg-Kohn theorem, where instead of the ground-state density the density of the excited-state gives the true many-body wavefunctions of the system. Further, the excited-state Kohn-Sham system is defined by comparing it's non-interacting kinetic energy with the true kinetic energy. The theory is demonstrated by studying a large number of atomic systems.Comment: submitted to J. Chem. Phy

    Negative Domain Wall Contribution to the Resistivity of Microfabricated Fe Wires

    Full text link
    The effect of domain walls on electron transport has been investigated in microfabricated Fe wires (0.65 to 20 μm\mu m linewidths) with controlled stripe domains. Magnetoresistance (MR) measurements as a function of domain wall density, temperature and the angle of the applied field are used to determine the low field MR contributions due to conventional sources in ferromagnetic materials and that due to the erasure of domain walls. A negative domain wall contribution to the resistivity is found. This result is discussed in light of a recent theoretical study of the effect of domain walls on quantum transport.Comment: 7 pages, 4 postscript figures and 1 jpg image (Fig. 1
    corecore