23,578 research outputs found

    The part-through surface crack in an elastic plate

    Get PDF
    Tensile stretching and bending of elastic plate containing surface crac

    Analysis of the feasibility of an experiment to measure carbon monoxide in the atmosphere

    Get PDF
    The feasibility of measuring atmospheric carbon monoxide from a remote platform using the correlation interferometry technique was considered. It has been determined that CO data can be obtained with an accuracy of 10 percent using this technique on the first overtone band of CO at 2.3 mu. That band has been found to be much more suitable than the stronger fundamental band at 4.6 mu. Calculations for both wavelengths are presented which illustrate the effects of atmospheric temperature profiles, inversion layers, ground temperature and emissivity, CO profile, reflectivity, and atmospheric pressure. The applicable radiative transfer theory on which these calculations are based is described together with the principles of the technique

    Development of a breadboard model correlation interferometer for the carbon monoxide pollution experiment

    Get PDF
    The breadboard model of the correlation interferometer for the Carbon Monoxide Pollution Experiment has been designed, fabricated, and tested. Laboratory, long-path, and atmospheric tests which were performed show the technique to be a feasible method for obtaining a global carbon monoxide map and a vertical carbon monoxide profile and similar information is readily obtainable for methane as well. In addition, the technique is readily applicable to other trace gases by minor instrumental changes. As shown by the results and the conclusions, it has been determined that CO and CH4 data can be obtained with an accuracy of 10% using this technique on the spectral region around 2.3 microns

    Dynamics of quartz tuning fork force sensors used in scanning probe microscopy

    Full text link
    We have performed an experimental characterization of the dynamics of oscillating quartz tuning forks which are being increasingly used in scanning probe microscopy as force sensors. We show that tuning forks can be described as a system of coupled oscillators. Nevertheless, this description requires the knowledge of the elastic coupling constant between the prongs of the tuning fork, which has not yet been measured. Therefore tuning forks have been usually described within the single oscillator or the weakly coupled oscillators approximation that neglects the coupling between the prongs. We propose three different procedures to measure the elastic coupling constant: an opto-mechanical method, a variation of the Cleveland method and a thermal noise based method. We find that the coupling between the quartz tuning fork prongs has a strong influence on the dynamics and the measured motion is in remarkable agreement with a simple model of coupled harmonic oscillators. The precise determination of the elastic coupling between the prongs of a tuning fork allows to obtain a quantitative relation between the resonance frequency shift and the force gradient acting at the free end of a tuning fork prong.Comment: 16 pages, 6 figures, 2 Table

    Quantum Rotor Engines

    Full text link
    This chapter presents autonomous quantum engines that generate work in the form of directed motion for a rotor. We first formulate a prototypical clock-driven model in a time-dependent framework and demonstrate how it can be translated into an autonomous engine with the introduction of a planar rotor degree of freedom. The rotor plays both the roles of internal engine clock and of work repository. Using the example of a single-qubit piston engine, the thermodynamic performance is then reviewed. We evaluate the extractable work in terms of ergotropy, the kinetic energy associated to net directed rotation, as well as the intrinsic work based on the exerted torque under autonomous operation; and we compare them with the actual energy output to an external dissipative load. The chapter closes with a quantum-classical comparison of the engine's dynamics. For the single-qubit piston example, we propose two alternative representations of the qubit in an entirely classical framework: (i) a coin flip model and (ii) a classical magnet moment, showing subtle differences between the quantum and classical descriptions.Comment: Chapter of the upcoming book "Thermodynamics in the Quantum Regime - Recent Progress and Outlook

    Volatility clustering and scaling for financial time series due to attractor bubbling

    Full text link
    A microscopic model of financial markets is considered, consisting of many interacting agents (spins) with global coupling and discrete-time thermal bath dynamics, similar to random Ising systems. The interactions between agents change randomly in time. In the thermodynamic limit the obtained time series of price returns show chaotic bursts resulting from the emergence of attractor bubbling or on-off intermittency, resembling the empirical financial time series with volatility clustering. For a proper choice of the model parameters the probability distributions of returns exhibit power-law tails with scaling exponents close to the empirical ones.Comment: For related publications see http://www.helbing.or

    Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations

    Full text link
    While the investors' responses to price changes and their price forecasts are well accepted major factors contributing to large price fluctuations in financial markets, our study shows that investors' heterogeneous and dynamic risk aversion (DRA) preferences may play a more critical role in the dynamics of asset price fluctuations. We propose and study a model of an artificial stock market consisting of heterogeneous agents with DRA, and we find that DRA is the main driving force for excess price fluctuations and the associated volatility clustering. We employ a popular power utility function, U(c,γ)=c1γ11γU(c,\gamma)=\frac{c^{1-\gamma}-1}{1-\gamma} with agent specific and time-dependent risk aversion index, γi(t)\gamma_i(t), and we derive an approximate formula for the demand function and aggregate price setting equation. The dynamics of each agent's risk aversion index, γi(t)\gamma_i(t) (i=1,2,...,N), is modeled by a bounded random walk with a constant variance δ2\delta^2. We show numerically that our model reproduces most of the ``stylized'' facts observed in the real data, suggesting that dynamic risk aversion is a key mechanism for the emergence of these stylized facts.Comment: 17 pages, 7 figure

    Risks and benefits HIV preexposure prophylaxis with tenofovir/emtricitabine in an older male with comorbidities

    Get PDF
    Renal toxicity in a 73 year old man using tenofovir/emtricitabine (TDF/FTC) as pre-exposure prophylaxis (PrEP) is described. Reduced renal reserve, a higher exposure to co-medications and co-morbidities can present a challenge when assessing the risks and benefits of tenofovir based PrEP in the ageing population
    corecore