1,021 research outputs found

    Petawatt laser absorption bounded

    Full text link
    The interaction of petawatt (1015 W10^{15}\ \mathrm{W}) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light ff, and even the range of ff is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that ff exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials

    Wiki surveys: Open and quantifiable social data collection

    Full text link
    In the social sciences, there is a longstanding tension between data collection methods that facilitate quantification and those that are open to unanticipated information. Advances in technology now enable new, hybrid methods that combine some of the benefits of both approaches. Drawing inspiration from online information aggregation systems like Wikipedia and from traditional survey research, we propose a new class of research instruments called wiki surveys. Just as Wikipedia evolves over time based on contributions from participants, we envision an evolving survey driven by contributions from respondents. We develop three general principles that underlie wiki surveys: they should be greedy, collaborative, and adaptive. Building on these principles, we develop methods for data collection and data analysis for one type of wiki survey, a pairwise wiki survey. Using two proof-of-concept case studies involving our free and open-source website www.allourideas.org, we show that pairwise wiki surveys can yield insights that would be difficult to obtain with other methods.Comment: 24 pages, 8 figures, 1 tabl

    Communicating Applied Mathematics: Four Examples

    Get PDF
    Communicating Applied Mathematics is a writing- and speaking-intensive graduate course at North Carolina State University. The purpose of this article is to provide a brief description of the course objectives and the assignments. Parts A–D of of this article represent the class projects and illustrate the outcome of the course: • The Evolution of an Optimization Test Problem: From Motivation to Implementation, by Daniel E. Finkel and Jill P. Reese • Finding the Volume of a Powder from a Single Surface Height Measurement, by Christopher Kuster • Finding Oscillations in Resonant Tunneling Diodes, by Matthew Lasater • A Shocking Discovery: Nonclassical Waves in Thin Liquid Films, by Rachel Lev

    Quantitative single shot and spatially resolved plasma wakefield diagnostics

    Get PDF
    Diagnosing plasma conditions can give great advantages in optimizing plasma wakefield accelerator experiments. One possible method is that of photon acceleration. By propagating a laser probe pulse through a plasma wakefield and extracting the imposed frequency modulation, one can obtain an image of the density modulation of the wakefield. In order to diagnose the wakefield parameters at a chosen point in the plasma, the probe pulse crosses the plasma at oblique angles relative to the wakefield. In this paper, mathematical expressions relating the frequency modulation of the laser pulse and the wakefield density profile of the plasma for oblique crossing angles are derived. Multidimensional particle-in-cell simulation results presented in this paper confirm that the frequency modulation profiles and the density modulation profiles agree to within 10%. Limitations to the accuracy of the measurement are discussed in this paper. This technique opens new possibilities to quantitatively diagnose the plasma wakefield density at known positions within the plasma column

    Quantitative single shot and spatially resolved plasma wakefield diagnostics

    Get PDF
    Diagnosing plasma conditions can give great advantages in optimizing plasma wakefield accelerator experiments. One possible method is that of photon acceleration. By propagating a laser probe pulse through a plasma wakefield and extracting the imposed frequency modulation, one can obtain an image of the density modulation of the wakefield. In order to diagnose the wakefield parameters at a chosen point in the plasma, the probe pulse crosses the plasma at oblique angles relative to the wakefield. In this paper, mathematical expressions relating the frequency modulation of the laser pulse and the wakefield density profile of the plasma for oblique crossing angles are derived. Multidimensional particle-in-cell simulation results presented in this paper confirm that the frequency modulation profiles and the density modulation profiles agree to within 10%. Limitations to the accuracy of the measurement are discussed in this paper. This technique opens new possibilities to quantitatively diagnose the plasma wakefield density at known positions within the plasma column

    Delay in Antibiotic Administration Is Associated With Mortality Among Septic Shock Patients With Staphylococcus aureus Bacteremia

    Get PDF
    Objectives: The relationship between the timing of antibiotics and mortality among septic shock patients has not been examined among patients specifically with Staphylococcus aureus bacteremia. Design: Retrospective analysis of a Veterans Affairs S. aureus bacteremia database. Settings: One-hundred twenty-two hospitals in the Veterans Affairs Health System. Patients: Patients with septic shock and S. aureus bacteremia admitted directly from the emergency department to the ICU from January 1, 2003, to October 1, 2015, were evaluated. Interventions: Time to appropriate antibiotic administration and 30-day mortality. Measurements and Main Results: A total of 506 patients with S. aureus bacteremia and septic shock were included in the analysis. Thirty-day mortality was 78.1% for the entire cohort and was similar for those participants with methicillin-resistant S. aureus and methicillin-sensitive S. aureus bacteremia. Our multivariate analysis revealed that, as compared with those who received appropriate antibiotics within 1 hour after emergency department presentation, each additional hour that passed before appropriate antibiotics were administered produced an odds ratio of 1.11 (95% CI, 1.02–1.21) of mortality within 30 days. This odds increase equates to an average adjusted mortality increase of 1.3% (95% CI, 0.4–2.2%) for every hour that passes before antibiotics are administered. Conclusions: The results of this study further support the importance of prompt appropriate antibiotic administration for patients with septic shock. Physicians should consider acting quickly to administer antibiotics with S. aureus coverage to any patient suspected of having septic shock

    Optimized pulses for the control of uncertain qubits

    Full text link
    Constructing high-fidelity control fields that are robust to control, system, and/or surrounding environment uncertainties is a crucial objective for quantum information processing. Using the two-state Landau-Zener model for illustrative simulations of a controlled qubit, we generate optimal controls for \pi/2- and \pi-pulses, and investigate their inherent robustness to uncertainty in the magnitude of the drift Hamiltonian. Next, we construct a quantum-control protocol to improve system-drift robustness by combining environment-decoupling pulse criteria and optimal control theory for unitary operations. By perturbatively expanding the unitary time-evolution operator for an open quantum system, previous analysis of environment-decoupling control pulses has calculated explicit control-field criteria to suppress environment-induced errors up to (but not including) third order from \pi/2- and \pi-pulses. We systematically integrate this criteria with optimal control theory, incorporating an estimate of the uncertain parameter, to produce improvements in gate fidelity and robustness, demonstrated via a numerical example based on double quantum dot qubits. For the qubit model used in this work, post facto analysis of the resulting controls suggests that realistic control-field fluctuations and noise may contribute just as significantly to gate errors as system and environment fluctuations.Comment: 38 pages, 15 figures, RevTeX 4.1, minor modifications to the previous versio

    Ionic and electronic properties of the topological insulator Bi2_2Te2_2Se investigated using β\beta-detected nuclear magnetic relaxation and resonance of 8^8Li

    Full text link
    We report measurements on the high temperature ionic and low temperature electronic properties of the 3D topological insulator Bi2_2Te2_2Se using ion-implanted 8^8Li β\beta-detected nuclear magnetic relaxation and resonance. With implantation energies in the range 5-28 keV, the probes penetrate beyond the expected range of the topological surface state, but are still within 250 nm of the surface. At temperatures above ~150 K, spin-lattice relaxation measurements reveal isolated 8^8Li+^{+} diffusion with an activation energy EA=0.185(8)E_{A} = 0.185(8) eV and attempt frequency τ01=8(3)×1011\tau_{0}^{-1} = 8(3) \times 10^{11} s1^{-1} for atomic site-to-site hopping. At lower temperature, we find a linear Korringa-like relaxation mechanism with a field dependent slope and intercept, which is accompanied by an anomalous field dependence to the resonance shift. We suggest that these may be related to a strong contribution from orbital currents or the magnetic freezeout of charge carriers in this heavily compensated semiconductor, but that conventional theories are unable to account for the extent of the field dependence. Conventional NMR of the stable host nuclei may help elucidate their origin.Comment: 17 pages, 12 figures, submitted to Phys. Rev.
    corecore