1,638 research outputs found

    Network Hubs Buffer Environmental Variation in Saccharomyces cerevisiae

    Get PDF
    Regulatory and developmental systems produce phenotypes that are robust to environmental and genetic variation. A gene product that normally contributes to this robustness is termed a phenotypic capacitor. When a phenotypic capacitor fails, for example when challenged by a harsh environment or mutation, the system becomes less robust and thus produces greater phenotypic variation. A functional phenotypic capacitor provides a mechanism by which hidden polymorphism can accumulate, whereas its failure provides a mechanism by which evolutionary change might be promoted. The primary example to date of a phenotypic capacitor is Hsp90, a molecular chaperone that targets a large set of signal transduction proteins. In both Drosophila and Arabidopsis, compromised Hsp90 function results in pleiotropic phenotypic effects dependent on the underlying genotype. For some traits, Hsp90 also appears to buffer stochastic variation, yet the relationship between environmental and genetic buffering remains an important unresolved question. We previously used simulations of knockout mutations in transcriptional networks to predict that many gene products would act as phenotypic capacitors. To test this prediction, we use high-throughput morphological phenotyping of individual yeast cells from single-gene deletion strains to identify gene products that buffer environmental variation in Saccharomyces cerevisiae. We find more than 300 gene products that, when absent, increase morphological variation. Overrepresented among these capacitors are gene products that control chromosome organization and DNA integrity, RNA elongation, protein modification, cell cycle, and response to stimuli such as stress. Capacitors have a high number of synthetic-lethal interactions but knockouts of these genes do not tend to cause severe decreases in growth rate. Each capacitor can be classified based on whether or not it is encoded by a gene with a paralog in the genome. Capacitors with a duplicate are highly connected in the protein–protein interaction network and show considerable divergence in expression from their paralogs. In contrast, capacitors encoded by singleton genes are part of highly interconnected protein clusters whose other members also tend to affect phenotypic variability or fitness. These results suggest that buffering and release of variation is a widespread phenomenon that is caused by incomplete functional redundancy at multiple levels in the genetic architecture

    The applicability of self-regulation theories in sport : goal adjustment capacities, stress appraisals, coping and well-being among athletes

    Get PDF
    Objectives: We examined a model, informed by self-regulation theories, which included goal adjustment capacities, appraisals of challenge and threat, coping, and well-being. Design: Prospective. Methods: Two hundred and twelve athletes from the United Kingdom (n = 147) or Australia (n = 65), who played team (n = 135) or individual sports (n = 77), and competed at international (n = 7), national (n = 11), county (n = 67), club (n = 84), or beginner (n = 43) levels participated in this study. Participants completed measures of goal adjustment capacities and stress appraisals two days before competing. Athletes also completed questions on coping and well-being within three hours of their competition ending. Results: The way an athlete responds to an unattainable goal is associated with his or her well-being in the period leading up to and including the competition. Goal reengagement positively predicted well-being, whereas goal disengagement negatively predicted well-being. Further, goal reengagement was positively associated with challenge appraisals, which in turn was linked to task-oriented coping, and task-oriented coping positively associated with well-being. Conclusion: When highly-valued goals become unattainable, consultants could encourage athletes to seek out alternative approaches to achieve the same goal or help them develop a completely new goal

    High-Performance Silicon-Based Multiple Wavelength Source

    Full text link
    We demonstrate a stable CMOS-compatible on-chip multiple-wavelength source by filtering and modulating individual lines from a frequency comb generated by a microring resonator optical parametric oscillator.. We show comb operation in a low-noise state that is stable and usable for many hours. Bit-error rate measurements demonstrate negligible power penalty from six independent frequencies when compared to a tunable diode laser baseline. Open eye diagrams confirm the fidelity of the 10 Gb/s data transmitted at the comb frequencies and the suitability of this device for use as a fully integrated silicon-based WDM source.Comment: 3 pages, 3 figure

    Second-Harmonic Generation in Silicon Nitride Ring Resonators

    Full text link
    The emerging field of silicon photonics seeks to unify the high bandwidth of optical communications with CMOS microelectronic circuits. Many components have been demonstrated for on-chip optical communications, including those that utilize the nonlinear optical properties of silicon[1, 2], silicon dioxide[3, 4] and silicon nitride[5, 6]. Processes such as second harmonic generation, which are enabled by the second-order susceptibility, have not been developed since the bulk χ(2)\chi^{(2)} vanishes in these centrosymmetric CMOS materials. Generating the lowest-order nonlinearity would open the window to a new array of CMOS-compatible optical devices capable of nonlinear functionalities not achievable with the?χ(3)\chi^{(3)} response such as electro-optic modulation, sum frequency up-conversion, and difference frequency generation. Here we demonstrate second harmonic (SH) generation in CMOS compatible integrated silicon nitride (Si3N4) waveguides. The χ(2)\chi^{(2)} response is induced in the centrosymmetric material by using the nanoscale structure to break the bulk symmetry. We use a high quality factor Q ring resonator cavity to enhance the efficiency of the nonlinear optical process and detect SH output with milliwatt input powers.Comment: 4 pages, 3 figure

    A Silicon-Based Monolithic Optical Frequency Comb Source

    Full text link
    Recently developed techniques for generating precisely equidistant optical frequencies over broad wavelength ranges are revolutionizing precision physical measurement [1-3]. These frequency "combs" are produced primarily using relatively large, ultrafast laser systems. However, recent research has shown that broad-bandwidth combs can be produced using highly-nonlinear interactions in microresonator optical parametric oscillators [4-11]. Such devices not only offer the potential for developing extremely compact optical atomic clocks but are also promising for astronomical spectroscopy [12-14], ultrashort pulse shaping [15], and ultrahigh-speed communications systems. Here we demonstrate the generation of broad-bandwidth optical frequency combs from a CMOS-compatible integrated microresonator [16,17], which is a fully-monolithic and sealed chip-scale device making it insensitive to the surrounding environment. We characterize the comb quality using a novel self-referencing method and verify that the comb line frequencies are equidistant over a bandwidth that is nearly an order of magnitude larger than previous measurements. In addition, we investigate the ultrafast temporal properties of the comb and demonstrate its potential to serve as a chip-scale source of ultrafast (sub-ps) pulses
    corecore