407 research outputs found

    Kinetics of the γ–δ phase transition in energetic nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

    Get PDF
    The solid, secondary explosive nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7 or HMX has four different stable polymorphs which have different molecular conformations, crystalline structures, and densities, making structural phase transitions between these nontrivial. Previous studies of the kinetics of the β–δ HMX structural transition found this to happen by a nucleation and growth mechanism, where growth was governed by the heat of fusion, or melting, even though the phase transition temperature is more than 100 K below the melting point. A theory known as virtual melting could easily justify this since the large volume difference in the two phases creates a strain at their interface that can lower the melting point to the phase transition temperature through a relaxation of the elastic energy. To learn more about structural phase transitions in organic crystalline solids and virtual melting, here we use time-resolved X-ray diffraction to study another structural phase transition in HMX, γ–δ. Again, second order kinetics are observed which fit to the same nucleation and growth model associated with growth by melting even though the volume change in this transition is too small to lower the melting point by interfacial strain. To account for this, we present a more general model illustrating that melting over a very thin layer at the interface between the two phases reduces the total interfacial energy and is therefore thermodynamically favorable and can drive the structural phase transition in the absence of large volume changes. Our work supports the idea that virtual melting may be a more generally applicable mechanism for structural phase transitions in organic crystalline solids

    Imaging stress and magnetism at high pressures using a nanoscale quantum sensor

    Get PDF
    Pressure alters the physical, chemical and electronic properties of matter. The development of the diamond anvil cell (DAC) enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena ranging from the properties of planetary interiors to transitions between quantum mechanical phases. In this work, we introduce and utilize a novel nanoscale sensing platform, which integrates nitrogen-vacancy (NV) color centers directly into the culet (tip) of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging (~600 nm) of both stress fields and magnetism, up to pressures ~30 GPa and for temperatures ranging from 25-340 K. For the former, we quantify all six (normal and shear) stress components with accuracy <0.01<0.01 GPa, offering unique new capabilities for characterizing the strength and effective viscosity of solids and fluids under pressure. For the latter, we demonstrate vector magnetic field imaging with dipole accuracy <1011<10^{-11} emu, enabling us to measure the pressure-driven αϵ\alpha\leftrightarrow\epsilon phase transition in iron as well as the complex pressure-temperature phase diagram of gadolinium. In addition to DC vector magnetometry, we highlight a complementary NV-sensing modality using T1 noise spectroscopy; crucially, this demonstrates our ability to characterize phase transitions even in the absence of static magnetic signatures. By integrating an atomic-scale sensor directly into DACs, our platform enables the in situ imaging of elastic, electric and magnetic phenomena at high pressures.Comment: 18 + 50 pages, 4 + 19 figure

    Strain-induced phase transformation under compression in a diamond anvil cell: Simulations of a sample and gasket

    Get PDF
    Combined high pressure phase transformations (PTs) and plastic flow in a sample within a gasket compressed in diamond anvil cell (DAC) are studied for the first time using finite element method. The key point is that phase transformations are modelled as strain-induced, which involves a completely different kinetic description than for traditional pressure-induced PTs. The model takes into account, contact sliding with Coulomb and plastic friction at the boundaries between the sample, gasket, and anvil. A comprehensive computational study of the effects of the kinetic parameter, ratio of the yield strengths of high and low-pressure phases and the gasket, sample radius, and initial thickness on the PTs and plastic flow is performed. A new sliding mechanism at the contact line between the sample, gasket, and anvil called extrusion-based pseudoslip is revealed, which plays an important part in producing high pressure. Strain-controlled kinetics explains why experimentally determined phase transformation pressure and kinetics (concentration of high pressure phase vs. pressure) differ for different geometries and properties of the gasket and the sample: they provide different plastic strain, which was not measured. Utilization of the gasket changes radial plastic flow toward the center of a sample, which leads to high quasi-homogeneous pressure for some geometries. For transformation to a stronger high pressure phase, plastic strain and concentration of a high-pressure phase are also quasi-homogeneous. This allowed us to suggest a method of determining strain-controlled kinetics from experimentation, which is not possible for weaker and equal-strength high-pressure phases and cases without a gasket. Some experimental phenomena are reproduced and interpreted. Developed methods and obtained results represent essential progress toward the understanding of PTs under compression in the DAC. This will allow one optimal design of experiments and conditions for synthesis of new high pressure phases

    Mind the gap? The persistence of pathological discourses in urban regeneration policy

    Get PDF
    Urban regeneration policy has historically framed policy problems using a discourse that pathologises areas and spatial communities. Since 2001 in England, and 2002 in Scotland a structural change in policy has occurred where citywide partnerships are now meant overcome structural spatial inequalities, countering pathological explanations. This paper uses historical and discourse analysis to evaluate one of the major community regeneration strategies developed by the Scottish Executive in 2002: Better Communities in Scotland: Closing the Gap. It seeks to ask whether structural change in policy was paralleled by discursive change; what discursive path dependence is evidenced? The text is placed in the historic context of UK urban renewal policies dating back to the launch of the Urban Programme in 1968 and particularly the policy discourse created by the influential Conservative government policy of 1988 New Life for Urban Scotland and the wider discourses of poverty and neighbourhood renewal policy created by Labour governments since 1997. The close textual analysis of the text shows that Better Communities in Scotland continues to pathologise spatial communities. Although this suggests a degree of historical path dependency, the historic breadth of the analysis also problematises simple historical determinism

    Plastic flows and phase transformations in materials under compression in diamond anvil cell: Effect of contact sliding

    Get PDF
    Modeling of coupled plastic flows and strain-induced phase transformations (PTs) under high pressure in a diamond anvil cell is performed with the focus on the effect of the contact sliding between sample and anvils. Finite element software ABAQUS is utilized and a combination of Coulomb friction and plastic friction is considered. Results are obtained for PTs to weaker, equal-strength, and stronger high pressure phases, using different scaling parameters in a strain-controlled kinetic equation, and with various friction coefficients. Compared to the model with cohesion, artificial shear banding near the constant surface is eliminated. Sliding and the reduction in friction coefficient intensify radial plastic flow in the entire sample (excluding a narrow region near the contact surface) and a reduction in thickness. A reduction in the frictioncoefficient to 0.1 intensifies sliding and increases pressure in the central region. Increases in both plastic strain and pressure lead to intensification of strain-induced PT. The effect of self-locking of sliding is revealed. Multiple experimental phenomena are reproduced and interpreted. Thus, plastic flow and PT can be controlled by controlling friction

    Strain-induced phase transformations under compression, unloading, and reloading in a diamond anvil cell

    Get PDF
    Strain-induced phase transformations (PTs) in a sample under compression, unloading, and reloading in a diamond anvil cell are investigated in detail, by applying finite element method. In contrast to previous studies, the kinetic equation includes the pressure range in which both direct and reverse PTs occur simultaneously. Results are compared to the case when “no transformation” region in the pressure range exists instead, for various values of the kinetic parameters and ratios of the yield strengths of low and high pressure phases. Under unloading (which has never been studied before), surprising plastic flow and reverse PT are found, which were neglected in experiments and change interpretation of experimental results. They are caused both by heterogeneous stress redistribution and transformation-induced plasticity. After reloading, the reverse PT continues followed by intense direct PT. However, PT is less pronounced than after initial compression and geometry of transformed zone changes. In particular, a localized transformed band of a weaker high pressure phase does not reappear in comparison with the initial compression. A number of experimental phenomena are reproduced and interpreted

    Coupled phase transformations and plastic flows under torsion at high pressure in rotational diamond anvil cell: Effect of contact sliding

    Get PDF
    A three-dimensional large-sliding contact model coupled with strain-induced phase transformations (PTs) and plastic flow in a disk-like sample under torsion at high pressure in rotational diamond anvil cell (RDAC) is formulated and studied. Coulomb and plastic friction are combined and take into account variable parameters due to PT. Results are obtained for weaker, equal-strength, and stronger high pressure phases, and for three values of the kinetic coefficient in a strain-controlled kinetic equation and friction coefficient. All drawbacks typical of problem with cohesion are overcome, including eliminating mesh-dependent shear band and artificial plastic zones. Contact sliding intensifies radial plastic flow, which leads to larger reduction in sample thickness. Larger plastic strain and increased pressure in the central region lead to intensification of PT. However, the effect of the reduction in the friction coefficient on PT kinetics is nonmonotonous. Sliding increases away from the center and with growing rotation and is weakly dependent on the kinetic coefficient. Also, cyclic back and forth torsion is studied and compared to unidirectional torsion. Multiple experimental phenomena, e.g., pressure self-multiplication effect, steps (plateaus) at pressure distribution, flow to the center of a sample, and oscillatory pressure distribution for weaker high-pressure phase, are reproduced and interpreted. Reverse PT in high pressure phase that flowed to the low pressure region is revealed. Possible misinterpretation of experimental PT pressure is found. Obtained results represent essential progress toward understanding of strain-induced PTs under compression and shear in RDAC and may be used for designing experiments for synthesis of new high pressure phases and reduction in PT pressure for known phases, as well as for determination of PT kinetics from experiments

    Visual activism and social justice: using visual methods to make young people’s complex lives visible across ‘public’ and ‘private’ spaces

    Get PDF
    Much critical social justice research, including work employing visual methods, focuses on young people&rsquo;s use of public spaces leaving domestic spaces relatively unexplored. Such research tacitly maintains modernist notions of the public/private distinction in which the private sphere is considered less relevant to concerns of social justice. However, UK crime and social justice policy has increasingly intervened in the home lives of the poorest British families. Further, such policies have been legitimated by drawing on (or not contesting) media imagery that constructs these family lives almost entirely negatively, obscuring their complexity. Drawing on childhood studies research, and a project that employed visual methods to explore belonging among young people in foster, kinship or residential care, this paper examines participants&rsquo; often fragile efforts to find or forge places in which they could feel at &lsquo;home&rsquo; and imagine a future. In so doing, it invites visual activists to reconsider their understanding of public and private spaces in order to contest prevalent unsympathetic policy representations of poorer young people&rsquo;s lives, to focus greater attention on their need for support, and to extend imaginations of their futures

    Exclusionary employment in Britain’s broken labour market

    Get PDF
    There is growing evidence of the problematic nature of the UK’s ‘flexible labour market’ with rising levels of in-work poverty and insecurity. Yet successive Governments have stressed that paid work is the route to inclusion, focussing attention on the divide between employed and unemployed. Past efforts to measure social exclusion have tended to make the same distinction. The aim of this paper is to apply Levitas et al’s (2007) framework to assess levels of exclusionary employment, i.e. exclusion arising directly from an individual’s labour market situation. Using data from the Poverty and Social Exclusion UK survey, results show that one in three adults in paid work is in poverty, or in insecure or poor quality employment. One third of this group have not seen any progression in their labour market situation in the last five years. The policy focus needs to shift from ‘Broken Britain’ to Britain’s broken labour market
    corecore