7 research outputs found

    Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility

    Get PDF
    Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and DNA, which may impair the sperm’s potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants (antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis, future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause

    A Live Birth Subsequent to IVF following Egg Retrieval Only 12 Hours after hCG Priming

    Get PDF
    Introduction. To report a live birth following egg retrieval after only 12 hours from hCG priming. Patients. A childless couple with five-years-lasting secondary infertility. Methods. IVF was performed according to the long protocol. Two immature oocytes were retrieved following only 12 hours after hCG priming due to the patient misunderstanding. The eggs were cultured in vitro and ICSI was performed following polar body extruded after 24 hours in culture. After additional 24 hours a 4-cell embryo was developed and ET was performed. Results. A viable pregnancy was achieved and a healthy baby girl was delivered at 38 weeks of gestation. Conclusion. In a rare and unexpected situation when immature oocytes are retrieved following a short hCG priming, the eggs should be cultured in vitro, late ICSI should be performed, and a pregnancy may be expected

    Identification of Premeiotic, Meiotic, and Postmeiotic Cells in Testicular Biopsies Without Sperm from Sertoli Cell-Only Syndrome Patients

    No full text
    Sertoli cell-only syndrome (SCOS) affects about 26.3⁻57.8% of azoospermic men, with their seminiferous tubules containing only Sertoli cells. Recently, it was reported that testicular biopsies from nonobstructive azoospermic (NOA) patients contained germ cells, and that sperm could be found in the tubules of 20% of SCOS patients using testicular sperm extraction technology. Since the patients without sperm in their testicular biopsies do not have therapy to help them to father a biological child, in vitro maturation of spermatogonial stem cells (SSCs) isolated from their testis is a new approach for possible future infertility treatment. Recently, the induction of human and mice SSCs proliferation and differentiation was demonstrated using different culture systems. Our group reported the induction of spermatogonial cell proliferation and differentiation to meiotic and postmeiotic stages in mice, rhesus monkeys, and prepubertal boys with cancer using 3D agar and methylcellulose (MCS) culture systems. The aim of the study was to identify the type of spermatogenic cells present in biopsies without sperm from SCOS patients, and to examine the possibility of inducing spermatogenesis from isolated spermatogonial cells of these biopsies in vitro using 3D MCS. We used nine biopsies without sperm from SCOS patients, and the presence of spermatogenic markers was evaluated by PCR and specific immunofluorescence staining analyses. Isolated testicular cells were cultured in MCS in the presence of StemPro enriched media with different growth factors and the development of colonies/clusters was examined microscopically. We examined the presence of cells from the different stages of spermatogenesis before and after culture in MCS for 3⁻7 weeks. Our results indicated that these biopsies showed the presence of premeiotic markers (two to seven markers/biopsy), meiotic markers (of nine biopsies, cAMP responsive element modulator-1 (CREM-1) was detected in five, lactate dehydrogenase (LDH) in five, and BOULE in three) and postmeiotic markers (protamine was detected in six biopsies and acrosin in three). In addition, we were able to induce the development of meiotic and/or postmeiotic stages from spermatogonial cells isolated from three biopsies. Thus, our study shows for the first time the presence of meiotic and/or postmeiotic cells in biopsies without the sperm of SCOS patients. Isolated cells from some of these biopsies could be induced to meiotic and/or postmeiotic stages under in vitro culture conditions

    An artificial intelligence algorithm for automated blastocyst morphometric parameters demonstrates a positive association with implantation potential

    No full text
    Abstract Blastocyst selection is primarily based on morphological scoring systems and morphokinetic data. These methods involve subjective grading and time-consuming techniques. Artificial intelligence allows for objective and quick blastocyst selection. In this study, 608 blastocysts were selected for transfer using morphokinetics and Gardner criteria. Retrospectively, morphometric parameters of blastocyst size, inner cell mass (ICM) size, ICM-to-blastocyst size ratio, and ICM shape were automatically measured by a semantic segmentation neural network model. The model was trained on 1506 videos with 102 videos for validation with no overlap between the ICM and trophectoderm models. Univariable logistic analysis found blastocyst size and ICM-to-blastocyst size ratio to be significantly associated with implantation potential. Multivariable regression analysis, adjusted for woman age, found blastocyst size to be significantly associated with implantation potential. The odds of implantation increased by 1.74 for embryos with a blastocyst size greater than the mean (147 ± 19.1 μm). The performance of the algorithm was represented by an area under the curve of 0.70 (p < 0.01). In conclusion, this study supports the association of a large blastocyst size with higher implantation potential and suggests that automatically measured blastocyst morphometrics can be used as a precise, consistent, and time-saving tool for improving blastocyst selection
    corecore