9,518 research outputs found
Diffuse emission in the presence of inhomogeneous spin-orbit interaction for the purpose of spin filtration
A lateral interface connecting two regions with different strengths of the
Bychkov-Rashba spin-orbit interaction can be used as a spin polarizer of
electrons in two dimensional semiconductor heterostructures. [Khodas \emph{et
al.}, Phys. Rev. Lett. \textbf{92}, 086602 (2004)]. In this paper we consider
the case when one of the two regions is ballistic, while the other one is
diffusive. We generalize the technique developed for the solution of the
problem of the diffuse emission to the case of the spin dependent scattering at
the interface, and determine the distribution of electrons emitted from the
diffusive region. It is shown that the diffuse emission is an effective way to
get electrons propagating at small angles to the interface that are most
appropriate for the spin filtration and a subsequent spin manipulation.
Finally, a scheme is proposed of a spin filter device, see Fig. 9, that creates
two almost fully spin-polarized beams of electrons.Comment: 11 pages, 9 figure
Flight software development for the isothermal dendritic growth experiment
The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment will be operated by real-time control software which will not only monitor and control onboard experiment hardware, but will also communicate, via downlink data and uplink commands, with the Payload Operations Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development approach being used to implement this system began with software functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with software prototyping was then used to generate a detailed design consisting of structure charts, module prologues, and Program Design Language (PDL) specifications. This detailed design will next be used to code the software, followed finally by testing against the functional requirements. The result will be a modular real-time control software system with traceability through every phase of the development process
Higher order correction to the neutrino self-energy in a medium and its astrophysical applications
We have calculated the 1/M^4 (M the vector boson mass) order correction to
the neutrino self-energy in a medium. The possible application of this higher
order contribution to the neutrino effective potential is considered in the
context of the Early Universe hot plasma and of the cosmological Gamma Ray
Burst fireball. We found that, depending on the medium parameters and on the
neutrino properties (mixing angle and mass square difference) the resonant
oscillation of active to active neutrinos is possible.Comment: 10 pages, revtex style, uses axodraw.sty, 1 figur
Quantum dot dephasing by edge states
We calculate the dephasing rate of an electron state in a pinched quantum
dot, due to Coulomb interactions between the electron in the dot and electrons
in a nearby voltage biased ballistic nanostructure. The dephasing is caused by
nonequilibrium time fluctuations of the electron density in the nanostructure,
which create random electric fields in the dot. As a result, the electron level
in the dot fluctuates in time, and the coherent part of the resonant
transmission through the dot is suppressed
Neutrino flux predictions for known Galactic microquasars
It has been proposed recently that Galactic microquasars may be prodigious
emitters of TeV neutrinos that can be detected by upcoming km^2 neutrino
telescopes. In this paper we consider a sample of identified microquasars and
microquasar candiates, for which available data enables rough determination of
the jet parameters. By employing the parameters inferred from radio
observations of various jet ejection events, we determine the neutrino fluxes
that should have been produced during these events by photopion production in
the jet. Despite the large uncertainties in our analysis, we demonstrate that
in several of the sources considered, the neutrino flux at Earth, produced in
events similar to those observed, would exceed the detection threshold of a
km^2 neutrino detector. The class of microquasars may contain also sources with
bulk Lorentz factors larger than those characteristic of the sample considered
here, directed along our line of sight. Such sources, which may be very
difficult to resolve at radio wavelengths and hence may be difficult to
identify as microqusar candidates, may emit neutrinos with fluxes significantly
larger than typically obtained in the present analysis. These sources may
eventually be identified through their neutrino and gamma-ray emission.Comment: 17 pages. Submitted to Ap
Quantized adiabatic quantum pumping due to interference
Recent theoretical calculations, demonstrating that quantized charge transfer
due to adiabatically modulated potentials in mesoscopic devices can result
purely from the interference of the electron wave functions (without invoking
electron-electron interactions) are reviewed: (1) A new formula is derived for
the pumped charge Q (per period); It reproduces the Brouwer formula without a
bias, and also yields the effect of the modulating potential on the Landauer
formula in the presence of a bias. (2) For a turnstile geometry, with
time-dependent gate voltages V_L(t) and V_R(t), the magnitude and sign of Q are
determined by the relative position and orientation of the closed contour
traversed by the system in the {V_L-V_R} plane, relative to the transmission
resonances in that plane. Integer values of Q (in units of e) are achieved when
a transmission peak falls inside the contour, and are given by the winding
number of the contour. (3) When the modulating potential is due to surface
acoustic waves, Q exhibits a staircase structure, with integer values,
reminiscent of experimental observations.Comment: Invited talk, Localization, Tokyo, August 200
Transient Emission From Dissipative Fronts in Magnetized, Relativistic Outflows. II. Synchrotron Flares
The time dependent synchrotron emission from relativistic jets, and the
relation between the synchrotron and ERC emission is considered within the
framework of the radiative front model. The timescale and profile of the
optically thin emission are shown to be determined, in this model, by the shock
formation radius, the thickness of expelled fluid slab and the variation of the
front's parameters due to its transverse expansion. For a range of reasonable
conditions, a variety of flare shapes can be produced, varying from roughly
symmetric with exponential rises and decays, as often seen in blazars, to
highly asymmetric with a fast rise and a much slower, power law decay, as seen
in GRB afterglows. The onset, duration, and fluence of low-frequency (below the
initial turnover frequency) and hard gamma-ray (above the initial gamma-spheric
energy) outbursts are limited by opacity effects; the emission at these
energies is quite generally delayed and, in the case of sufficiently short
length outbursts, severely attenuated. The observational consequences are
discussed. One distinctive prediction of this model is that in a single,
powerful source, the upper cutoff of the gamma-ray spectrum should be
correlated with the timescale of the outburst and with the amplitude of
variations at long wavelengths (typically radio to millimeter).Comment: AAS LaTex, 14 pgs, accepted to A
- …