794 research outputs found
A Strong Szego Theorem for Jacobi Matrices
We use a classical result of Gollinski and Ibragimov to prove an analog of
the strong Szego theorem for Jacobi matrices on . In particular, we
consider the class of Jacobi matrices with conditionally summable parameter
sequences and find necessary and sufficient conditions on the spectral measure
such that and lie in
, the linearly-weighted space.Comment: 26 page
Acoustoelectric pumping through a ballistic point contact in the presence of magnetic fields
The acoustoelectric current, J, induced in a ballistic point contact (PC) by
a surface acoustic wave is calculated in the presence of a perpendicular
magnetic field, B. It is found that the dependence of the current on the Fermi
energy in the terminals is strongly correlated with that of the PC conductance:
J is small at the conductance plateaus, and is large at the steps. Like the
conductance, the acoustoelectric current has the same functional behavior as in
the absence of the field, but with renormalized energy scales, which depend on
the strength of the magnetic field, | B|.Comment: 7 page
Quantized adiabatic charge pumping and resonant transmission
Adiabatically pumped charge, carried by non-interacting electrons through a
quantum dot in a turnstile geometry, is studied as function of the strength of
the two modulating potentials (related to the conductances of the two
point-contacts to the leads) and of the phase shift between them. It is shown
that the magnitude and sign of the pumped charge are determined by the relative
position and orientation of the closed contour traversed by the system in the
parameter plane, and the transmission peaks (or resonances) in that plane.
Integer values (in units of the electronic charge ) of the pumped charge
(per modulation period) are achieved when a transmission peak falls inside the
pumping contour. The integer value is given by the winding number of the
pumping contour: double winding in the same direction gives a charge of 2,
while winding around two opposite branches of the transmission peaks or winding
in opposite directions can give a charge close to zero.Comment: 7 pages, 12 figure
Quantization of adiabatic pumped charge in the presence of superconducting lead
We investigate the parametric electron pumping of a double barrier structure
in the presence of a superconducting lead. The parametric pumping is
facilitated by cyclic variation of the barrier heights and of the
barriers. In the weak coupling regime, there exists a resonance line in the
parameter space so that the energy of the quasi-bound state is in
line with the incoming Fermi energy. Levinson et al found recently that the
pumped charge for each pumping cycle is quantized with for normal
structure when the pumping contour encircles the resonance line. In the
presence of a superconducting lead, we find that the pumped charge is quantized
with the value
Optimal quantum pump in the presence of a superconducting lead
We investigate the parametric pumping of a hybrid structure consisting of a
normal quantum dot, a normal lead and a superconducting lead. Using the time
dependent scattering matrix theory, we have derived a general expression for
the pumped electric current and heat current. We have also derived the
relationship among the instantaneous pumped heat current, electric current, and
shot noise. This gives a lower bound for the pumped heat current in the hybrid
system similar to that of the normal case obtained by Avron et al
Adiabatic spin pumping through a quantum dot with a single orbital level
We investigate an adiabatic spin pumping through a quantum dot with a single
orbital energy level under the Zeeman effect. Electron pumping is produced by
two periodic time dependent parameters, a magnetic field and a difference of
the dot-lead coupling between the left and right barriers of the dot. The
maximum charge transfer per cycle is found to be , the unit charge in the
absence of a localized moment in the dot. Pumped charge and spin are different,
and spin pumping is possible without charge pumping in a certain situation.
They are tunable by changing the minimum and maximum value of the magnetic
field.Comment: RevTeX4, 5 pages, 3 figure
Ultra-High Energy Neutrino Fluxes and Their Constraints
Applying our recently developed propagation code we review extragalactic
neutrino fluxes above 10^{14} eV in various scenarios and how they are
constrained by current data. We specifically identify scenarios in which the
cosmogenic neutrino flux, produced by pion production of ultra high energy
cosmic rays outside their sources, is considerably higher than the
"Waxman-Bahcall bound". This is easy to achieve for sources with hard injection
spectra and luminosities that were higher in the past. Such fluxes would
significantly increase the chances to detect ultra-high energy neutrinos with
experiments currently under construction or in the proposal stage.Comment: 11 pages, 15 figures, version published in Phys.Rev.
Quantum Pumping and Quantized Magnetoresistance in a Hall Bar
We show how a dc current can be generated in a Hall bar without applying a
bias voltage. The Hall resistance that corresponds to this pumped current
is quantized, just as in the usual integer quantum Hall effect (IQHE). In
contrast with the IQHE, however, the longitudinal resistance does not
vanish on the plateaus, but equals the Hall resistance. We propose an
experimental geometry to measure the pumped current and verify the predicted
behavior of and .Comment: RevTeX, 3 figure
Dissipation and noise in adiabatic quantum pumps
We investigate the distribution function, the heat flow and the noise
properties of an adiabatic quantum pump for an arbitrary relation of pump
frequency and temperature. To achieve this we start with the
scattering matrix approach for ac-transport. This approach leads to expressions
for the quantities of interest in terms of the side bands of particles exiting
the pump. The side bands correspond to particles which have gained or lost a
modulation quantum . We find that our results for the pump
current, the heat flow and the noise can all be expressed in terms of a
parametric emissivity matrix. In particular we find that the current
cross-correlations of a multiterminal pump are directly related a to a
non-diagonal element of the parametric emissivity matrix. The approach allows a
description of the quantum statistical correlation properties (noise) of an
adiabatic quantum pump
Gamma-Ray Bursts: The Underlying Model
A pedagogical derivation is presented of the ``fireball'' model of gamma-ray
bursts, according to which the observable effects are due to the dissipation of
the kinetic energy of a relativistically expanding wind, a ``fireball.'' The
main open questions are emphasized, and key afterglow observations, that
provide support for this model, are briefly discussed. The relativistic outflow
is, most likely, driven by the accretion of a fraction of a solar mass onto a
newly born (few) solar mass black hole. The observed radiation is produced once
the plasma has expanded to a scale much larger than that of the underlying
``engine,'' and is therefore largely independent of the details of the
progenitor, whose gravitational collapse leads to fireball formation. Several
progenitor scenarios, and the prospects for discrimination among them using
future observations, are discussed. The production in gamma- ray burst
fireballs of high energy protons and neutrinos, and the implications of burst
neutrino detection by kilometer-scale telescopes under construction, are
briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture
Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure
- …