7,355 research outputs found

    Quantized adiabatic quantum pumping due to interference

    Full text link
    Recent theoretical calculations, demonstrating that quantized charge transfer due to adiabatically modulated potentials in mesoscopic devices can result purely from the interference of the electron wave functions (without invoking electron-electron interactions) are reviewed: (1) A new formula is derived for the pumped charge Q (per period); It reproduces the Brouwer formula without a bias, and also yields the effect of the modulating potential on the Landauer formula in the presence of a bias. (2) For a turnstile geometry, with time-dependent gate voltages V_L(t) and V_R(t), the magnitude and sign of Q are determined by the relative position and orientation of the closed contour traversed by the system in the {V_L-V_R} plane, relative to the transmission resonances in that plane. Integer values of Q (in units of e) are achieved when a transmission peak falls inside the contour, and are given by the winding number of the contour. (3) When the modulating potential is due to surface acoustic waves, Q exhibits a staircase structure, with integer values, reminiscent of experimental observations.Comment: Invited talk, Localization, Tokyo, August 200

    Quantum dot dephasing by edge states

    Full text link
    We calculate the dephasing rate of an electron state in a pinched quantum dot, due to Coulomb interactions between the electron in the dot and electrons in a nearby voltage biased ballistic nanostructure. The dephasing is caused by nonequilibrium time fluctuations of the electron density in the nanostructure, which create random electric fields in the dot. As a result, the electron level in the dot fluctuates in time, and the coherent part of the resonant transmission through the dot is suppressed

    Stress Induced Anisotropy in Pressurized Thick Walled Cylinders

    Get PDF
    The most important mechanical features of propellants arise from the presence of a highly packed array of granular particles (filler), and a distribution of adhesive strengths between the rubbery binder and these particles. The first factor leads to dilatation and the formation of voids in any stress field other than pure hydrostatic compression. The second factor virtually guarantees that the pullaway of the binder from the filler is nonuniform, leading in extreme cases to the so-called "zebra-stripe" effect, or localized dewetting. This factor also is associated with stress relaxation due to the slow flow of the binder from regions of high strain concentration into regions of low concentration or into voids. Finally, because the binder is incompressible, and the filler is for all practical purposes infinitely rigid, most of the macroscopically applied load is concentrated as large strains near the binder-filler interfaces leading to non-linear behavior. At ambient temperature or thereabouts, viscoelasticity as associated with polymer chain uncoiling plays no role in the mechanical behavior of the propellant. Summarizing, the important mechanical features to be expected are 1. Dilatation with void formation when the stress is tensile. 2. Localized dilatation because of nonuniformity of adhesion strengths. 3. Stress relaxation due to binder flow and perhaps due to particle movement at a very slow rate determined by frictional and adhesive effects . 4. Nonlinear stress-strain relations due to high local strains at binder-filler interfaces

    Acoustoelectric current and pumping in a ballistic quantum point contact

    Full text link
    The acoustoelectric current induced by a surface acoustic wave (SAW) in a ballistic quantum point contact is considered using a quantum approach. We find that the current is of the "pumping" type and is not related to drag, i.e. to the momentum transfer from the wave to the electron gas. At gate voltages corresponding to the plateaus of the quantized conductance the current is small. It is peaked at the conductance step voltages. The peak current oscillates and decays with increasing SAW wavenumber for short wavelengths. These results contradict previous calculations, based on the classical Boltzmann equation.Comment: 4 pages, 1 figur

    Approximated maximum likelihood estimation in multifractal random walks

    Full text link
    We present an approximated maximum likelihood method for the multifractal random walk processes of [E. Bacry et al., Phys. Rev. E 64, 026103 (2001)]. The likelihood is computed using a Laplace approximation and a truncation in the dependency structure for the latent volatility. The procedure is implemented as a package in the R computer language. Its performance is tested on synthetic data and compared to an inference approach based on the generalized method of moments. The method is applied to estimate parameters for various financial stock indices.Comment: 8 pages, 3 figures, 2 table

    Entanglement, measurement, and conditional evolution of the Kondo singlet interacting with a mesoscopic detector

    Full text link
    We investigate various aspects of the Kondo singlet in a quantum dot (QD) electrostatically coupled to a mesoscopic detector. The two subsystems are represented by an entangled state between the Kondo singlet and the charge-dependent detector state. We show that the phase-coherence of the Kondo singlet is destroyed in a way that is sensitive to the charge-state information restored both in the magnitude and in the phase of the scattering coefficients of the detector. We also introduce the notion of the `conditional evolution' of the Kondo singlet under projective measurement on the detector. Our study reveals that the state of the composite system is disentangled upon this measurement. The Kondo singlet evolves into a particular state with a fixed number of electrons in the quantum dot. Its relaxation time is shown to be sensitive only to the QD-charge dependence of the transmission probability in the detector, which implies that the phase information is erased in this conditional evolution process. We discuss implications of our observations in view of the possible experimental realization.Comment: Focus issue on "Interference in Mesoscopic Systems" of New J. Phy
    corecore