186 research outputs found

    Study of High Beta Optics Solution for TOTEM

    Get PDF
    The TOTEM experiment requires special high beta optics solutions. We report on studies of optics for an intermediate β* = 90m, as well as a solutions for a very high β* of 1535 m, which respect all known constraints. These optics are rather different from the normal physics optics and will require global tune changes or adjustments

    Simulation of Beam-Gas Scattering in the LHC

    Get PDF
    We report on background studies for the LHC with detailed simulations. The simulations now include generation of beam-gas scattering in combination with multiturn tracking of protons. Low beta optics and available aperture files for this configuration make it possible to generate loss maps according to the pressure distribution in the LHC

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Properties of the strongly paired fermionic condensates

    Full text link
    We study a gas of fermions undergoing a wide resonance s-wave BCS-BEC crossover, in the BEC regime at zero temperature. We calculate the chemical potential and the speed of sound of this Bose-condensed gas, as well as the condensate depletion, in the low density approximation. We discuss how higher order terms in the low density expansion can be constructed. We demonstrate that the standard BCS-BEC gap equation is invalid in the BEC regime and is inconsistent with the results obtained here. We indicate how our theory can in principle be extended to nonzero temperature. The low density approximation we employ breaks down in the intermediate BCS-BEC crossover region. Hence our theory is unable to predict how the chemical potential and the speed of sound evolve once the interactions are tuned towards the BCS regime. As a part of our theory, we derive the well known result for the bosonic scattering length diagrammatically and check that there are no bound states of two bosons.Comment: 16 pages, 15 figures. References added and typos correcte

    Spectra of pinned charge density waves with background current

    Full text link
    We develop techniques which allow us to calculate the spectra of pinned charge density waves with background current

    Causality and universality in low-energy quantum scattering

    Get PDF
    We generalize Wigner's causality bounds and Bethe's integral formula for the effective range to arbitrary dimension and arbitrary angular momentum. Moreover, we discuss the impact of these constraints on the separation of low- and high-momentum scales and universality in low-energy quantum scattering.Comment: 9 pages, 1 figure, published versio

    Stability of mode-locked kinks in the ac driven and damped sine-Gordon lattice

    Full text link
    Kink dynamics in the underdamped and strongly discrete sine-Gordon lattice that is driven by the oscillating force is studied. The investigation is focused mostly on the properties of the mode-locked states in the {\it overband} case, when the driving frequency lies above the linear band. With the help of Floquet theory it is demonstrated that the destabilizing of the mode-locked state happens either through the Hopf bifurcation or through the tangential bifurcation. It is also observed that in the overband case the standing mode-locked kink state maintains its stability for the bias amplitudes that are by the order of magnitude larger than the amplitudes in the low-frequency case.Comment: To appear in Springer Series on Wave Phenomena, special volume devoted to the LENCOS'12 conference; 6 figure

    Stability of the fermionic gases close to a p-wave Feshbach resonance

    Full text link
    We study the stability of the paired fermionic p-wave superfluid made out of identical atoms all in the same hyperfine state close to a p-wave Feshbach resonance. First we reproduce known results concerning the lifetime of a 3D superfluid, in particular, we show that it decays at the same rate as its interaction energy, thus precluding its equilibration before it decays. Then we proceed to study its stability in case when the superfluid is confined to 2D by means of an optical harmonic potential. We find that the relative stability is somewhat improved in 2D in the BCS regime, such that the decay rate is now slower than the appropriate interaction energy scale. The improvement in stability, however, is not dramatic and one probably needs to look for other mechanisms to suppress decay to create a long lived 2D p-wave fermionic superfluid

    Causality and the effective range expansion

    Full text link
    We derive the generalization of Wigner's causality bounds and Bethe's integral formula for the effective range parameter to arbitrary dimension and arbitrary angular momentum. We also discuss the impact of these constraints on the separation of low- and high-momentum scales and universality in low-energy scattering. Some of our results were summarized earlier in a letter publication. In this work, we present full derivations and several detailed examples.Comment: 27 pages, 5 figures, explicit examples added, typos corrected, final versio
    • …
    corecore