14,694 research outputs found

    A comparative study of the evolution of enzymes and nucleic acids Semiannual progress report, 1 May - 30 Nov. 1967

    Get PDF
    Immunological and enzymological approaches to evolution of enzymes and nucleic acid

    Quantum Versus Mean Field Behavior of Normal Modes of a Bose-Einstein Condensate in a Magnetic Trap

    Full text link
    Quantum evolution of a collective mode of a Bose-Einstein condensate containing a finite number N of particles shows the phenomena of collapses and revivals. The characteristic collapse time depends on the scattering length, the initial amplitude of the mode and N. The corresponding time values have been derived analytically under certain approximation and numerically for the parabolic atomic trap. The revival of the mode at time of several seconds, as a direct evidence of the effect, can occur, if the normal component is significantly suppressed. We also discuss alternative means to verify the proposed mechanism.Comment: minor corrections are introduced into the tex

    Enhancement of the ν=5/2\nu = 5/2 Fractional Quantum Hall State in a Small In-Plane Magnetic Field

    Get PDF
    Using a 50-nm width, ultra-clean GaAs/AlGaAs quantum well, we have studied the Landau level filling factor ν=5/2\nu = 5/2 fractional quantum Hall effect in a perpendicular magnetic field B∼B \sim 1.7 T and determined its dependence on tilted magnetic fields. Contrary to all previous results, the 5/2 resistance minimum and the Hall plateau are found to strengthen continuously under an increasing tilt angle 0<θ<25∘0 < \theta < 25^\circ (corresponding to an in-plane magnetic field 0 << B∥B_\parallel <0.8< 0.8 T). In the same range of θ\theta the activation gaps of both the 7/3 and the 8/3 states are found to increase with tilt. The 5/2 state transforms into a compressible Fermi liquid upon tilt angle θ>60∘\theta > 60^\circ, and the composite fermion series [2+p/(2p±1)p/(2p\pm1)], p=p = 1, 2 can be identified. Based on our results, we discuss the relevance of a Skyrmion spin texture at ν=5/2\nu = 5/2 associated with small Zeeman energy in wide quantum wells, as proposed by Woˊ\acute{\text o}js etet alal., Phys. Rev. Lett. 104, 086801 (2010).Comment: 5+ pages, 3 figures, accepted for by Phy. Rev. Let

    Transits and Occultations of an Earth-Sized Planet in an 8.5-Hour Orbit

    Get PDF
    We report the discovery of an Earth-sized planet (1.16±0.19R⊕1.16\pm 0.19 R_\oplus) in an 8.5-hour orbit around a late G-type star (KIC 8435766, Kepler-78). The object was identified in a search for short-period planets in the {\it Kepler} database and confirmed to be a transiting planet (as opposed to an eclipsing stellar system) through the absence of ellipsoidal light variations or substantial radial-velocity variations. The unusually short orbital period and the relative brightness of the host star (mKepm_{\rm Kep} = 11.5) enable robust detections of the changing illumination of the visible hemisphere of the planet, as well as the occultations of the planet by the star. We interpret these signals as representing a combination of reflected and reprocessed light, with the highest planet dayside temperature in the range of 2300 K to 3100 K. Follow-up spectroscopy combined with finer sampling photometric observations will further pin down the system parameters and may even yield the mass of the planet.Comment: Accepted for publication, ApJ, 10 pages and 6 figure

    Active Microrheology of Networks Composed of Semiflexible Polymers. II. Theory and comparison with simulations

    Full text link
    Building on the results of our computer simulation (ArXiv cond-mat/0503573)we develop a theoretical description of the motion of a bead, embedded in a network of semiflexible polymers, and responding to an applied force. The theory reveals the existence of an osmotic restoring force, generated by the piling up of filaments in front of the moving bead and first deduced through computer simulations. The theory predicts that the bead displacement scales like x ~ t^alfa with time, with alfa=0.5 in an intermediate- and alfa=1 in a long-time regime. It also predicts that the compliance varies with concentration like c^(-4/3) in agreement with experiment.Comment: 18 pages and 2 figure

    A nonlocal eigenvalue problem and the stability of spikes for reaction-diffusion systems with fractional reaction rates

    Get PDF
    We consider a nonlocal eigenvalue problem which arises in the study of stability of spike solutions for reaction-diffusion systems with fractional reaction rates such as the Sel'kov model, the Gray-Scott system, the hypercycle Eigen and Schuster, angiogenesis, and the generalized Gierer-Meinhardt system. We give some sufficient and explicit conditions for stability by studying the corresponding nonlocal eigenvalue problem in a new range of parameters

    Shadow Enhancers Foster Robustness of Drosophila Gastrulation

    Get PDF
    SummaryCritical developmental control genes sometimes contain “shadow” enhancers that can be located in remote positions, including the introns of neighboring genes [1]. They nonetheless produce patterns of gene expression that are the same as or similar to those produced by more proximal primary enhancers. It was suggested that shadow enhancers help foster robustness in gene expression in response to environmental or genetic perturbations [2, 3]. We critically tested this hypothesis by employing a combination of bacterial artificial chromosome (BAC) recombineering and quantitative confocal imaging methods [2, 4]. Evidence is presented that the snail gene is regulated by a distal shadow enhancer located within a neighboring locus. Removal of the proximal primary enhancer does not significantly perturb snail function, including the repression of neurogenic genes and formation of the ventral furrow during gastrulation at normal temperatures. However, at elevated temperatures, there is sporadic loss of snail expression and coincident disruptions in gastrulation. Similar defects are observed at normal temperatures upon reductions in the levels of Dorsal, a key activator of snail expression (reviewed in [5]). These results suggest that shadow enhancers represent a novel mechanism of canalization whereby complex developmental processes “bring about one definite end-result regardless of minor variations in conditions” [6]

    Collisional shifts in optical-lattice atom clocks

    Get PDF
    We theoretically study the effects of elastic collisions on the determination of frequency standards via Ramsey fringe spectroscopy in optical-lattice atom clocks. Interparticle interactions of bosonic atoms in multiply-occupied lattice sites can cause a linear frequency shift, as well as generate asymmetric Ramsey fringe patterns and reduce fringe visibility due to interparticle entanglement. We propose a method of reducing these collisional effects in an optical lattice by introducing a phase difference of π\pi between the Ramsey driving fields in adjacent sites. This configuration suppresses site to site hopping due to interference of two tunneling pathways, without degrading fringe visibility. Consequently, the probability of double occupancy is reduced, leading to cancellation of collisional shifts.Comment: 15 pages, 11 figure
    • …
    corecore