3,704 research outputs found

    Urban wastewater reuse for crop production in the water-short Guanajuato River Basin, Mexico

    Get PDF
    Water quality / Waste waters / Water reuse / Water resource management / River basins / Irrigation water / Crop production / Water use / Data collection / Case studies / Mexico / Guanajuato River Basin / Tula Irrigation District

    Fluctuation Induced Instabilities in Front Propagation up a Co-Moving Reaction Gradient in Two Dimensions

    Full text link
    We study 2D fronts propagating up a co-moving reaction rate gradient in finite number reaction-diffusion systems. We show that in a 2D rectangular channel, planar solutions to the deterministic mean-field equation are stable with respect to deviations from planarity. We argue that planar fronts in the corresponding stochastic system, on the other hand, are unstable if the channel width exceeds a critical value. Furthermore, the velocity of the stochastic fronts is shown to depend on the channel width in a simple and interesting way, in contrast to fronts in the deterministic MFE. Thus, fluctuations alter the behavior of these fronts in an essential way. These affects are shown to be partially captured by introducing a density cutoff in the reaction rate. Some of the predictions of the cutoff mean-field approach are shown to be in quantitative accord with the stochastic results

    The fixation probability of rare mutators in finite asexual populations

    Full text link
    A mutator is an allele that increases the mutation rate throughout the genome by disrupting some aspect of DNA replication or repair. Mutators that increase the mutation rate by the order of 100 fold have been observed to spontaneously emerge and achieve high frequencies in natural populations and in long-term laboratory evolution experiments with \textit{E. coli}. In principle, the fixation of mutator alleles is limited by (i) competition with mutations in wild-type backgrounds, (ii) additional deleterious mutational load, and (iii) random genetic drift. Using a multiple locus model and employing both simulation and analytic methods, we investigate the effects of these three factors on the fixation probability PfixP_{fix} of an initially rare mutator as a function of population size NN, beneficial and deleterious mutation rates, and the strength of mutations ss. Our diffusion based approximation for PfixP_{fix} successfully captures effects (ii) and (iii) when selection is fast compared to mutation (μ/s1\mu/s \ll 1). This enables us to predict the conditions under which mutators will be evolutionarily favored. Surprisingly, our simulations show that effect (i) is typically small for strong-effect mutators. Our results agree semi-quantitatively with existing laboratory evolution experiments and suggest future experimental directions.Comment: 46 pages, 8 figure

    Radiation-induced micronucleus induction in lymphocytes identifies a high frequency of radiosensitive cases among breast cancer patients: a test for predisposition?

    Get PDF
    Enhanced sensitivity to the chromosome-damaging effects of ionizing radiation is a feature of many cancer-predisposing conditions. We previously showed that 42% of an unselected series of breast cancer patients and 9% of healthy control subjects showed elevated chromosomal radiosensitivity of lymphocytes irradiated in the G2 phase of the cell cycle. We suggested that, in addition to the highly penetrant genes BRCA1 and BRCA2, which confer a very high risk of breast cancer and are carried by about 5% of all breast cancer patients, there are also low-penetrance predisposing genes carried by a much higher proportion of breast cancer patients, a view supported by recent epidemiological studies. Ideally, testing for the presence of these putative genes should involve the use of simpler methods than the G2 assay, which requires metaphase analysis of chromosome damage. Here we report on the use of a simple, rapid micronucleus assay in G0 lymphocytes exposed to high dose rate (HDR) or low dose rate gamma-irradiation, with delayed mitogenic stimulation. Good assay reproducibility was obtained, particularly with the HDR protocol, which identified 31% (12 out of 39) of breast cancer patients compared with 5% (2 out of 42) of healthy controls as having elevated radiation sensitivity. In the long term, such cytogenetic assays may have the potential for selecting women for intensive screening for breast cancer

    Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Environmental Microbiology 14 (2012): 1210-1223, doi:10.1111/j.1462-2920.2012.02700.x.Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10 month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates, and production rates were quantified over time and depth. This interdisciplinary dataset was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favor DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified ‘bacterial switch’ hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature, and UV-A dose.This research was funded by National Science Foundation (NSF) grants OCE- 0525928, OCE-072417, and OCE-042516. Additional funding was provided by the NSF Center for Microbial Oceanography Research and Education (CMORE), the Gordon and Betty Moore Foundation, the Scurlock Fund, the Ocean Ventures Fund, a National Defense Science and Engineering Graduate Fellowship, and an Environmental Protection Agency STAR Graduate Fellowship

    The October 2014 United States treasury bond flash crash and the contributory effect of mini flash crashes

    Get PDF
    We investigate the causal uncertainty surrounding the flash crash in the U.S. Treasury bond market on October 15, 2014, and the unresolved concern that no clear link has been identified between the start of the flash crash at 9:33 and the opening of the U.S. equity market at 9:30. We consider the contributory effect of mini flash crashes in equity markets, and find that the number of equity mini flash crashes in the three-minute window between market open and the Treasury Flash Crash was 2.6 times larger than the number experienced in any other three-minute window in the prior ten weekdays. We argue that (a) this statistically significant finding suggests that mini flash crashes in equity markets both predicted and contributed to the October 2014 U.S. Treasury Bond Flash Crash, and (b) mini-flash crashes are important phenomena with negative externalities that deserve much greater scholarly attention

    Revising upper-ocean sulfur dynamics near Bermuda : new lessons from 3 years of concentration and rate measurements

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Chemistry 13 (2016): 302-313, doi:10.1071/EN15045.Oceanic biogeochemical cycling of dimethylsulfide (DMS), and its precursor dimethylsulfoniopropionate (DMSP), has gained considerable attention over the past three decades because of the potential role of DMS in climate mediation. Here we report 3 years of monthly vertical profiles of organic sulfur cycle concentrations (DMS, particulate DMSP (DMSPp) and dissolved DMSP (DMSPd)) and rates (DMSPd consumption, biological DMS consumption and DMS photolysis) from the Bermuda Atlantic Time-series Study (BATS) site taken between 2005 and 2008. Concentrations confirm the summer paradox with mixed layer DMS peaking ~90 days after peak DMSPp and ~50 days after peak DMSPp : Chl. A small decline in mixed layer DMS was observed relative to those measured during a previous study at BATS (1992–1994), potentially driven by long-term climate shifts at the site. On average, DMS cycling occurred on longer timescales than DMSPd (0.43 ± 0.35 v. 1.39 ± 0.76 day–1) with DMSPd consumption rates remaining elevated throughout the year despite significant seasonal variability in the bacterial DMSP degrader community. DMSPp was estimated to account for 4–5 % of mixed layer primary production and turned over at a significantly slower rate (~0.2 day–1). Photolysis drove DMS loss in the mixed layer during the summer, whereas biological consumption of DMS was the dominant loss process in the winter and at depth. These findings offer new insight into the underlying mechanisms driving DMS(P) cycling in the oligotrophic ocean, provide an extended dataset for future model evaluation and hypothesis testing and highlight the need for a reexamination of past modelling results and conclusions drawn from data collected with old methodologies.The authors acknowledge funding from the National Science Foundation (NSF) (OCE-0425166) and the Center for Microbial Oceanography Research and Education (CMORE) a NSF Science and Technology Center (EF-0424599)

    The Pneumonia Etiology Research for Child Health Project: A 21st Century Childhood Pneumonia Etiology Study

    Get PDF
    The Pneumonia Etiology Research for Child Health (PERCH) project is a 7-country, standardized, comprehensive evaluation of the etiologic agents causing severe pneumonia in children from developing countries. During previous etiology studies, between one-quarter and one-third of patients failed to yield an obvious etiology; PERCH will employ and evaluate previously unavailable innovative, more sensitive diagnostic techniques. Innovative and rigorous epidemiologic and analytic methods will be used to establish the causal association between presence of potential pathogens and pneumonia. By strategic selection of study sites that are broadly representative of regions with the greatest burden of childhood pneumonia, PERCH aims to provide data that reflect the epidemiologic situation in developing countries in 2015, using pneumococcal and Haemophilus influenzae type b vaccines. PERCH will also address differences in host, environmental, and/or geographic factors that might determine pneumonia etiology and, by preserving specimens, will generate a resource for future research and pathogen discovery
    corecore