5,185 research outputs found

    The Nucleus of Comet 10P/Tempel 2 in 2013 and Consequences Regarding Its Rotational State: Early Science from the Discovery Channel Telescope

    Full text link
    We present new lightcurve measurements of Comet 10P/Tempel 2 carried out with Lowell Observatory's Discovery Channel Telescope in early 2013 when the comet was at aphelion. These data represent some of the first science obtained with this new 4.3-m facility. With Tempel 2 having been observed to exhibit a small but ongoing spin-down in its rotation period for over two decades, our primary goals at this time were two-fold. First, to determine its current rotation period and compare it to that measured shortly after its most recent perihelion passage in 2010, and second, to disentangle the spin-down from synodic effects due to the solar day and the Earth's orbital motion and to determine the sense of rotation, i.e. prograde or retrograde. At our midpoint of 2013 Feb 24, the observed synodic period is 8.948+/-0.001 hr, exactly matching the predicted prograde rotation solution based on 2010 results, and yields a sidereal period of the identical value due to the solar and Earth synodic components just canceling out during the interval of the 2013 observations. The retrograde solution is ruled out because the associated sidereal periods in 2010 and 2013 are quite different even though we know that extremely little outgassing, needed to produce torques, occurred in this interval. With a definitive sense of rotation, the specific amounts of spin-down to the sidereal period could be assessed. The nominal values imply that the rate of spin-down has decreased over time, consistent with the secular drop in water production since 1988. Our data also exhibited an unexpectedly small lightcurve amplitude which appears to be associated with viewing from a large, negative sub-Earth latitude, and a lightcurve shape deviating from a simple sinusoid implying a highly irregularly shaped nucleus.Comment: Accepted by AJ; 12 pages of text (pre-print style), 3 tables, 2 figure

    Estar to SMOS: Development of Interferometric Radiometry for Remote Sensing from Space

    Get PDF
    ESTAR is an L-band radiometer that employs synthesis (interferometry) to obtain resolution in the across track dimension. It was designed as an aircraft prototype to demonstrate the technology of aperture synthesis for remote sensing of the earth from space. ESTAR was successful in several soil moisture and ocean salinity remote sensing experiments and demonstrated the potential of aperture synthesis for remote sensing. Among the lessons learned during the development of ESTAR are the scene dependence of calibration, that RFI is a problem, and the robustness of noise injection for the zero spacing radiometer. ESTAR was the first step in a path toward realizing aperture synthesis technology in space (e.g. SMOS). ESTAR was followed by a new instrument, 2D-STAR, which employs synthesis in both dimensions. 2D-STAR was tested in 2002 and participated in the SMEX field campaigns in 2003 and 2004

    Sensor data to measure Hawthorne effects in cookstove evaluation.

    Get PDF
    This data in brief article includes estimated time cooking based on temperature sensor data taken every 30 min from three stone fires and introduced fuel-efficient Envirofit stoves in approximately 168 households in rural Uganda. These households were part of an impact evaluation study spanning about six months to understand the effects of fuel-efficient cookstoves on fuel use and pollution. Daily particulate matter (pollution) and fuelwood use data are also included. This data in brief file only includes the weeks prior to, during, and after an in-person measurement team visited each home. The data is used to analyze whether households change cooking patterns when in-person measurement teams are present versus when only the temperature sensor is in the home

    Do mayors run for higher office? New evidence on progressive ambition

    Get PDF
    The mayor’s office potentially offers a launchpad for statewide and national political ambitions. We know relatively little, however, about how frequently mayors actually run for higher office, and which mayors choose to do so. This article combines longitudinal data on the career paths of the mayors of 200 big cities with new survey and interview data to investigate these questions. While we find that individual and city traits—especially gender—have some predictive power, the overwhelming story is that relatively few mayors—just under one-fifth—ever seek higher office. We suggest that ideological, institutional, and electoral factors all help to explain why so few mayors exhibit progressive ambition

    Two-Dimensional Synthetic-Aperture Radiometer

    Get PDF
    A two-dimensional synthetic-aperture radiometer, now undergoing development, serves as a test bed for demonstrating the potential of aperture synthesis for remote sensing of the Earth, particularly for measuring spatial distributions of soil moisture and ocean-surface salinity. The goal is to use the technology for remote sensing aboard a spacecraft in orbit, but the basic principles of design and operation are applicable to remote sensing from aboard an aircraft, and the prototype of the system under development is designed for operation aboard an aircraft. In aperture synthesis, one utilizes several small antennas in combination with a signal processing in order to obtain resolution that otherwise would require the use of an antenna with a larger aperture (and, hence, potentially more difficult to deploy in space). The principle upon which this system is based is similar to that of Earth-rotation aperture synthesis employed in radio astronomy. In this technology the coherent products (correlations) of signals from pairs of antennas are obtained at different antenna-pair spacings (baselines). The correlation for each baseline yields a sample point in a Fourier transform of the brightness-temperature map of the scene. An image of the scene itself is then reconstructed by inverting the sampled transform. The predecessor of the present two-dimensional synthetic-aperture radiometer is a one-dimensional one, named the Electrically Scanned Thinned Array Radiometer (ESTAR). Operating in the L band, the ESTAR employs aperture synthesis in the cross-track dimension only, while using a conventional antenna for resolution in the along-track dimension. The two-dimensional instrument also operates in the L band to be precise, at a frequency of 1.413 GHz in the frequency band restricted for passive use (no transmission) only. The L band was chosen because (1) the L band represents the long-wavelength end of the remote- sensing spectrum, where the problem of achieving adequate spatial resolution is most critical and (2) imaging airborne instruments that operate in this wavelength range and have adequate spatial resolution are difficult to build and will be needed in future experiments to validate approaches for remote sensing of soil moisture and ocean salinity. The two-dimensional instrument includes a rectangular array of patch antennas arranged in the form of a cross. The ESTAR uses analog correlation for one dimension, whereas the two-dimensional instrument uses digital correlation. In two dimensions, many more correlation pairs are needed and low-power digital correlators suitable for application in spaceborne remote sensing will help enable this technology. The two-dimensional instrument is dual-polarized and, with modification, capable of operating in a polarimetric mode. A flight test of the instrument took place in June 2003 and it participated in soil moisture experiments during the summers of 2003 and 2004

    Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    Get PDF
    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements

    Book Reviews

    Get PDF
    Book Reviews of: G. de Bertier de Sauvigny, La France et les français vus par les voyageurs américains, 1814-1948 (Flammarion, 1982-1985) Mary Midgley, Wickedness: A Philosophical Essay (Routledge & Kegan Paul, 1984) Jerome Bruner, Actual Minds, Possible Worlds (Harvard University Press, 1986

    Sun Glint and Sea Surface Salinity Remote Sensing

    Get PDF
    A new mission in space, called Aquarius/SAC-D, is being built to measure the salinity of the world's oceans. Salinity is an important parameter for understanding movement of the ocean water. This circulation results in the transportation of heat and is important for understanding climate and climate change. Measuring salinity from space requires precise instruments and a careful accounting for potential sources of error. One of these sources of error is radiation from the sun that is reflected from the ocean surface to the sensor in space. This paper examines this reflected radiation and presents an advanced model for describing this effect that includes the effects of ocean waves on the reflection

    Physics of Energy Efficient Buildings

    Get PDF

    Reduced dimensionality spin-orbit dynamics of CH3 + HCl reversible arrow CH4 Cl on ab initio surfaces

    Get PDF
    A reduced dimensionality quantum scattering method is extended to the study of spin-orbit nonadiabatic transitions in the CH3 + HCl reversible arrow CH4 + Cl(P-2(J)) reaction. Three two-dimensional potential energy surfaces are developed by fitting a 29 parameter double-Morse function to CCSD(T)/IB//MP2/cc-pV(T+d)Z-dk ab initio data; interaction between surfaces is described by geometry-dependent spin-orbit coupling functions fit to MCSCF/cc-pV(T+d)Z-dk ab initio data. Spectator modes are treated adiabatically via inclusion of curvilinear projected frequencies. The total scattering wave function is expanded in a vibronic basis set and close-coupled equations are solved via R-matrix propagation. Ground state thermal rate constants for forward and reverse reactions agree well with experiment. Multi-surface reaction probabilities, integral cross sections, and initial-state selected branching ratios all highlight the importance of vibrational energy in mediating nonadiabatic transition. Electronically excited state dynamics are seen to play a small but significant role as consistent with experimental conclusions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592732
    • …
    corecore