28,998 research outputs found

    Blind Normalization of Speech From Different Channels

    Full text link
    We show how to construct a channel-independent representation of speech that has propagated through a noisy reverberant channel. This is done by blindly rescaling the cepstral time series by a non-linear function, with the form of this scale function being determined by previously encountered cepstra from that channel. The rescaled form of the time series is an invariant property of it in the following sense: it is unaffected if the time series is transformed by any time-independent invertible distortion. Because a linear channel with stationary noise and impulse response transforms cepstra in this way, the new technique can be used to remove the channel dependence of a cepstral time series. In experiments, the method achieved greater channel-independence than cepstral mean normalization, and it was comparable to the combination of cepstral mean normalization and spectral subtraction, despite the fact that no measurements of channel noise or reverberations were required (unlike spectral subtraction).Comment: 25 pages, 7 figure

    Calibration of the visible and near-infrared channels of the LANDSAT-5 Thematic Mapper using high-altitude aircraft measurements

    Get PDF
    Visible near-infrared sensors mounted on operational satellites now in use do not have on-board full aperture absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurements of a bright, uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. In the work reported here, aircraft data were recorded over White Sands, New Mexico at satellite overpass time for the LANDSAT-5 Thematic Mapper (TM). A comparison of the coincident aircraft and orbiting satellite data showed the radiometric gain for TM channel 1 had degraded 4.7 percent by August 28, 1985; gains for TM channels 2 and 3 were within 1 percent of prelaunch values

    Kinetostatic Analysis and Solution Classification of a Planar Tensegrity Mechanism

    Full text link
    Tensegrity mechanisms have several interesting properties that make them suitable for a number of applications. Their analysis is generally challenging because the static equilibrium conditions often result in complex equations. A class of planar one-degree-of-freedom (dof) tensegrity mechanisms with three linear springs is analyzed in detail in this paper. The kinetostatic equations are derived and solved under several loading and geometric conditions. It is shown that these mechanisms exhibit up to six equilibrium configurations, of which one or two are stable. Discriminant varieties and cylindrical algebraic decomposition combined with Groebner base elimination are used to classify solutions as function of the input parameters.Comment: 7th IFToMM International Workshop on Computational Kinematics, May 2017, Poitiers, France. 201

    High performance dash on warning air mobile, missile system

    Get PDF
    An aircraft-missile system which performs a high acceleration takeoff followed by a supersonic dash to a 'safe' distance from the launch site is presented. Topics considered are: (1) technological feasibility to the dash on warning concept; (2) aircraft and boost trajectory requirements; and (3) partial cost estimates for a fleet of aircraft which provide 200 missiles on airborne alert. Various aircraft boost propulsion systems were studied such as an unstaged cryogenic rocket, an unstaged storable liquid, and a solid rocket staged system. Various wing planforms were also studied. Vehicle gross weights are given. The results indicate that the dash on warning concept will meet expected performance criteria, and can be implemented using existing technology, such as all-aluminum aircraft and existing high-bypass-ratio turbofan engines

    Hydromagnetic and gravitomagnetic crust-core coupling in a precessing neutron star

    Full text link
    We consider two types of mechanical coupling between the crust and the core of a precessing neutron star. First, we find that a hydromagnetic (MHD) coupling between the crust and the core strongly modifies the star's precessional modes when ta(Ts×Tp)1/2t_a\le\sim (T_s\times T_p)^{1/2}; here tat_a is the Alfven crossing timescale, and TsT_s and TpT_p are the star's spin and precession periods, respectively. We argue that in a precessing pulsar PSR B1828-11 the restoring MHD stress prevents a free wobble of the crust relative to the non-precessing core. Instead, the crust and the proton-electron plasma in the core must precess in unison, and their combined ellipticity determines the period of precession. Link has recently shown that the neutron superfluid vortices in the core of PSR B1828-11 cannot be pinned to the plasma; he has also argued that this lack of pinning is expected if the proton Fermi liquid in the core is type-I superconductor. In this case, the neutron superfluid is dynamically decoupled from the precessing motion. The pulsar's precession decays due to the mutual friction between the neutron superfluid and the plasma in the core. The decay is expected to occur over tens to hundreds of precession periods and may be measurable over a human lifetime. Such a measurement would provide information about the strong n-p interaction in the neutron-star core. Second, we consider the effect of gravitomagnetic coupling between the neutron superfluid in the core and the rest of the star and show that this coupling changes the rate of precession by about 10%. The general formalism developed in this paper may be useful for other applications.Comment: 6 page

    Stereo Computation for a Single Mixture Image

    Full text link
    This paper proposes an original problem of \emph{stereo computation from a single mixture image}-- a challenging problem that had not been researched before. The goal is to separate (\ie, unmix) a single mixture image into two constitute image layers, such that the two layers form a left-right stereo image pair, from which a valid disparity map can be recovered. This is a severely illposed problem, from one input image one effectively aims to recover three (\ie, left image, right image and a disparity map). In this work we give a novel deep-learning based solution, by jointly solving the two subtasks of image layer separation as well as stereo matching. Training our deep net is a simple task, as it does not need to have disparity maps. Extensive experiments demonstrate the efficacy of our method.Comment: Accepted by European Conference on Computer Vision (ECCV) 201

    Oxygenation-deoxygenation cycle of erythrocytes modulates submicron cell membrane fluctuations

    Get PDF
    Low frequency submicron fluctuations of the cell membrane were recently shown to be characteristic for different cell types, nevertheless their physiological role is yet unknown. Point dark-field microscopy based recordings of these local displacements of cell membrane in human erythrocytes, subjected to cyclic oxygenation and deoxygenation, reveals a reversible decrease of displacement amplitudes from 290 +/- 49 to 160 +/- 32 nm, respectively. A higher rate of RBC adhesion to a glass substratum is observed upon deoxygenation, probably due to a low level of fluctuation amplitudes. The variation in the amplitude of these displacements were reconstituted in open RBC ghosts by perfusing them with composite solutions of 2,3 diphosphoglycerate, Mg+2, and MgATP, which mimic the intracellular metabolite concentrations in oxygenated and deoxygenated erythrocytes. The mere change in intracellular Mg+2 during oxygenation-deoxygenation cycle is sufficient to explain these findings. The results imply that the magnitude of fluctuations amplitude is directly connected with cell deformability. This study suggests that the physiological cycle of oxygenation-deoxygenation provides a dynamic control of the bending deformability and adhesiveness characteristics of the RBC via a Mg+2-dependent reversible assembly of membrane-skeleton proteins. The existing coupling between oxygenation-deoxygenation of the RBC and its mechanical properties is expected to play a key role in blood microcirculation and may constitute an example of a general situation for other circulating blood cells, where the metabolic control of cytoskeleton dynamics may modulate their dynamic mechanical properties

    Curing singularities: From the big bang to black holes

    Get PDF
    Singular spacetimes are a natural prediction of Einstein's theory. Most memorable are the singular centers of black holes and the big bang. However, dilatonic extensions of Einstein's theory can support nonsingular spacetimes. The cosmological singularities can be avoided by dilaton driven inflation. Furthermore, a nonsingular black hole can be constructed in two dimensions.Comment: To appear as a brief report in Phys. Rev.

    Hybrid vehicle assessment. Phase 1: Petroleum savings analysis

    Get PDF
    The results of a comprehensive analysis of near term electric hybrid vehicles are presented, with emphasis on their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles are first modeled. The projected U.S. fleet composition is estimated, and conceptual hybrid vehicle designs are conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates are then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of sevral conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle mission battery combination. Conclusions and recommendations are presented, and development recommendations are identified
    corecore