3,883 research outputs found

    Energy storage mechanisms in vacancy-ordered Wadsley-Roth layered niobates

    Get PDF
    Wadsley–Roth (WR) crystallographic shear structures demonstrate high energy and power densities as Li-ion battery anode materials. We report the (de)lithiation behavior of two WR-derived layered niobates: NaNb_{3}O_{8} and KNb_{3}O_{8}. Both demonstrate multi-electron (Nb5+/Nb3+) redox on the first discharge, reacting with ≈5 mol Li per mol ANb_{3}O_{8}. Li intercalation in NaNb_{3}O_{8} is dominated by Li-diffusion kinetics and evolution of the interlayer structure, with Li initially filling octahedral sites near the interlayer space to draw the layers together to form a (2 × 2)_{∞} WR structure. This average structure change pushes Na ions into the square channels, blocking fast Li diffusion down the square channels that provide the fast Li-ion conduction in most WR materials. Upon charge, Li ions incorporated into the octahedral WR sites (ordered vacancies in the layered structure) are extracted, revealing a new, reversible Li site for additional capacity in WR-like materials. The behavior of KNb_{3}O_{8} is similar, but has additional hysteresis associated with its larger counter-cation. While neither layered niobate matches the demonstrated performance of WR materials, by studying them, we identify a route for increased capacity in WR-like frameworks. Additionally, we identify the important role of Li diffusion kinetics and counter-cations in the cycling behavior of WR-derived structures

    Stochastic tasks: difficulty and Levin search

    Full text link
    We establish a setting for asynchronous stochastic tasks that account for episodes, rewards and responses, and, most especially, the computational complexity of the algorithm behind an agent solving a task. This is used to determine the difficulty of a task as the (logarithm of the) number of computational steps required to acquire an acceptable policy for the task, which includes the exploration of policies and their verification. We also analyse instance difficulty, task compositions and decompositions.This work has been partially supported by the EU (FEDER) and the Spanish MINECO under grants TIN 2010-21062-C02-02, PCIN-2013-037 and TIN 2013-45732-C4-1-P, and by Generalitat Valenciana PROMETEOII 2015/013.Hernández Orallo, J. (2015). Stochastic tasks: difficulty and Levin search. En Artificial General Intelligence. Springer International Publishing. 90-100. http://hdl.handle.net/10251/66686S9010

    Coherent Signal Amplification in Bistable Nanomechanical Oscillators by Stochastic Resonance

    Full text link
    Stochastic resonance is a counter-intuitive concept[1,2], ; the addition of noise to a noisy system induces coherent amplification of its response. First suggested as a mechanism for the cyclic recurrence of ice ages, stochastic resonance has been seen in a wide variety of macroscopic physical systems: bistable ring lasers[3], SQUIDs[4,5], magnetoelastic ribbons[6], and neurophysiological systems such as the receptors in crickets[7] and crayfish[8]. Although it is fundamentally important as a mechanism of coherent signal amplification, stochastic resonance is yet to be observed in nanoscale systems. Here we report the observation of stochastic resonance in bistable nanomechanical silicon oscillators, which can play an important role in the realization of controllable high-speed nanomechanical memory cells. Our nanomechanical systems were excited into a dynamic bistable state and modulated in order to induce controllable switching; the addition of white noise showed a marked amplification of the signal strength. Stochastic resonance in nanomechanical systems paves the way for exploring macroscopic quantum coherence and tunneling, and controlling nanoscale quantum systems for their eventual use as robust quantum logic devices.Comment: 18 pages, 4 figure

    Overcoming cross-cultural group work tensions: mixed student perspectives on the role of social relationships

    Get PDF
    As universities worldwide rapidly internationalise, higher education classrooms have become unique spaces for collaboration between students from different countries. One common way to encourage collaboration between diverse peers is through group work. However, previous research has highlighted that cross-cultural group work can be challenging and has hinted at potential social tensions. To understand this notion better, we have used robust quantitative tools in this study to select 20 participants from a larger classroom of 860 students to take part in an in-depth qualitative interview about cross-cultural group work experiences. Participant views on social tensions in cross-cultural group work were elicited using a unique mediating artefact method to encourage reflection and in-depth discussion. In our analysis of emergent interview themes, we compared student perspectives on the role of social relationships in group work by their academic performance level. Our findings indicated that all students interviewed desired the opportunity to form social relationships with their group work members, but their motivations for doing so varied widely by academic performance level

    Conflict Resolution, Public Goods, and Patent Thickets

    Full text link

    Mindfulness-based stress reduction in Parkinson’s disease: a systematic review

    Get PDF
    Background: Mindfulness based stress reduction (MBSR) is increasingly being used to improve outcomes such as stress and depression in a range of long-term conditions (LTCs). While systematic reviews on MBSR have taken place for a number of conditions there remains limited information on its impact on individuals with Parkinson’s disease (PD). Methods: Medline, Central, Embase, Amed, CINAHAL were searched in March 2016. These databases were searched using a combination of MeSH subject headings where available and keywords in the title and abstracts. We also searched the reference lists of related reviews. Study quality was assessed based on questions from the Cochrane Collaboration risk of bias tool. Results: Two interventions and three papers with a total of 66 participants were included. The interventions were undertaken in Belgium (n = 27) and the USA (n = 39). One study reported significantly increased grey matter density (GMD) in the brains of the MBSR group compared to the usual care group. Significant improvements were reported in one study for a number of outcomes including PD outcomes, depression, mindfulness, and quality of life indicators. Only one intervention was of reasonable quality and both interventions failed to control for potential confounders in the analysis. Adverse events and reasons for drop-outs were not reported. There was also no reporting on the costs/benefits of the intervention or how they affected health service utilisation. Conclusion: This systematic review found limited and inconclusive evidence of the effectiveness of MBSR for PD patients. Both of the included interventions claimed positive effects for PD patients but significant outcomes were often contradicted by other results. Further trials with larger sample sizes, control groups and longer follow-ups are needed before the evidence for MBSR in PD can be conclusively judged

    Invasions and Extinctions Reshape Coastal Marine Food Webs

    Get PDF
    The biodiversity of ecosystems worldwide is changing because of species loss due to human-caused extinctions and species gain through intentional and accidental introductions. Here we show that the combined effect of these two processes is altering the trophic structure of food webs in coastal marine systems. This is because most extinctions (∼70%) occur at high trophic levels (top predators and other carnivores), while most invasions are by species from lower trophic levels (70% macroplanktivores, deposit feeders, and detritivores). These opposing changes thus alter the shape of marine food webs from a trophic pyramid capped by a diverse array of predators and consumers to a shorter, squatter configuration dominated by filter feeders and scavengers. The consequences of the simultaneous loss of diversity at top trophic levels and gain at lower trophic levels is largely unknown. However, current research suggests that a better understanding of how such simultaneous changes in diversity can impact ecosystem function will be required to manage coastal ecosystems and forecast future changes

    Activation of Ventral Tegmental Area 5-HT2C Receptors Reduces Incentive Motivation

    Get PDF
    FUNDING AND DISCLOSURE The research was funded by Wellcome Trust (WT098012) to LKH; and National Institute of Health (DK056731) and the Marilyn H. Vincent Foundation to MGM. The University of Michigan Transgenic Core facility is partially supported by the NIH-funded University of Michigan Center for Gastrointestinal Research (DK034933). The remaining authors declare no conflict of interest. ACKNOWLEDGMENTS We thank Dr Celine Cansell, Ms Raffaella Chianese and the staff of the Medical Research Facility for technical assistance. We thank Dr Vladimir Orduña for the scientific advice and technical assistance.Peer reviewedPublisher PD

    Strain-induced partially flat band, helical snake states, and interface superconductivity in topological crystalline insulators

    Get PDF
    Topological crystalline insulators in IV-VI compounds host novel topological surface states consisting of multi-valley massless Dirac fermions at low energy. Here we show that strain generically acts as an effective gauge field on these Dirac fermions and creates pseudo-Landau orbitals without breaking time-reversal symmetry. We predict the realization of this phenomenon in IV-VI semiconductor heterostructures, due to a naturally occurring misfit dislocation array at the interface that produces a periodically varying strain field. Remarkably, the zero-energy Landau orbitals form a flat band in the vicinity of the Dirac point, and coexist with a network of snake states at higher energy. We propose that the high density of states of this flat band gives rise to interface superconductivity observed in IV-VI semiconductor multilayers at unusually high temperatures, with non-BCS behavior. Our work demonstrates a new route to altering macroscopic electronic properties to achieve a partially flat band, and paves the way for realizing novel correlated states of matter.Comment: Accepted by Nature Physic

    Organophosphate Insecticides Target the Serotonergic System in Developing Rat Brain Regions: Disparate Effects of Diazinon and Parathion at Doses Spanning the Threshold for Cholinesterase Inhibition

    Get PDF
    BACKGROUND: In the developing brain, serotonin (5HT) systems are among the most sensitive to disruption by organophosphates. OBJECTIVES: We exposed neonatal rats to daily doses of diazinon or parathion on postnatal days (PND)1–4 and evaluated 5HT receptors and the 5HT transporter in brainstem and forebrain on PND5, focusing on doses of each agent below the maximum tolerated dose and spanning the threshold for cholinesterase inhibition: 0.5, 1, or 2 mg/kg for diazinon, and 0.02, 0.05, and 0.1 mg/kg for parathion. RESULTS: Diazinon evoked up-regulation of 5HT(1A) and 5HT(2) receptor expression even at doses devoid of effects on cholinesterase activity, a pattern similar to that seen earlier for another organophosphate, chlorpyrifos. In contrast, parathion decreased 5HT(1A) receptors, again at doses below those required for effects on cholinesterase. The two agents also differed in their effects on the 5HT transporter. Diazinon evoked a decrease in the brainstem and an increase in the forebrain, again similar to that seen for chlorpyrifos; this pattern is typical of damage of nerve terminals and reactive sprouting. Parathion had smaller, nonsignificant effects. CONCLUSIONS: Our results buttress the idea that, in the developing brain, the various organophosphates target specific neurotransmitter systems differently from each other and without the requirement for cholinesterase inhibition, their supposed common mechanism of action
    corecore