25,432 research outputs found
Hadron multiplicity in pp and AA collisions at LHC from the Color Glass Condensate
We provide quantitative predictions for the rapidity, centrality and energy
dependencies of inclusive charged-hadron productions for the forthcoming LHC
measurements in nucleus-nucleus collisions based on the idea of gluon
saturation in the color-glass condensate framework. Our formulation gives very
good descriptions of the first data from the LHC for the inclusive
charged-hadron production in proton-proton collisions, the deep inelastic
scattering at HERA at small Bjorken-x, and the hadron multiplicities in
nucleus-nucleus collisions at RHIC.Comment: 7 pages, 8 figures; v3: minor changes, one reference added, results
unchanged, the version to appear in Phys. Rev.
Microscopic Approach to Shear Viscosities in Superfluid Gases: From BCS to BEC
We compute the shear viscosity, , at general temperatures , in a
BCS-BEC crossover scheme which is demonstrably consistent with conservation
laws. The study of is important because it constrains microscopic
theories by revealing the excitation spectra. The onset of a normal state
pairing gap and the contribution from pair degrees of freedom imply that
at low becomes small, rather than exhibiting the upturn predicted by most
others. Using the local density approximation, we find quite reasonable
agreement with just-published experiments.Comment: 4 pages, 2 figure
Hydromagnetic and gravitomagnetic crust-core coupling in a precessing neutron star
We consider two types of mechanical coupling between the crust and the core
of a precessing neutron star. First, we find that a hydromagnetic (MHD)
coupling between the crust and the core strongly modifies the star's
precessional modes when ; here is the
Alfven crossing timescale, and and are the star's spin and
precession periods, respectively. We argue that in a precessing pulsar PSR
B1828-11 the restoring MHD stress prevents a free wobble of the crust relative
to the non-precessing core. Instead, the crust and the proton-electron plasma
in the core must precess in unison, and their combined ellipticity determines
the period of precession. Link has recently shown that the neutron superfluid
vortices in the core of PSR B1828-11 cannot be pinned to the plasma; he has
also argued that this lack of pinning is expected if the proton Fermi liquid in
the core is type-I superconductor. In this case, the neutron superfluid is
dynamically decoupled from the precessing motion. The pulsar's precession
decays due to the mutual friction between the neutron superfluid and the plasma
in the core. The decay is expected to occur over tens to hundreds of precession
periods and may be measurable over a human lifetime. Such a measurement would
provide information about the strong n-p interaction in the neutron-star core.
Second, we consider the effect of gravitomagnetic coupling between the neutron
superfluid in the core and the rest of the star and show that this coupling
changes the rate of precession by about 10%. The general formalism developed in
this paper may be useful for other applications.Comment: 6 page
Accelerated Detectors and Temperature in (Anti) de Sitter Spaces
We show, in complete accord with the usual Rindler picture, that detectors
with constant acceleration in de Sitter (dS) and Anti de Sitter (AdS)
spaces with cosmological constants measure temperatures , the detector "5-acceleration" in the
embedding flat 5-space. For dS, this recovers a known result; in AdS, where
is negative, the temperature is well defined down to the critical
value , again in accord with the underlying kinematics. The existence
of a thermal spectrum is also demonstrated for a variety of candidate wave
functions in AdS backgrounds.Comment: Latex +2 Fi
Recommended from our members
Structural coupling and magnetic tuning in Mn2–x CoxP magnetocalorics for thermomagnetic power generation
On the Quasi-Periodic Oscillations of Magnetars
We study torsional Alfv\'en oscillations of magnetars, i.e., neutron stars
with a strong magnetic field. We consider the poloidal and toroidal components
of the magnetic field and a wide range of equilibrium stellar models. We use a
new coordinate system (X,Y), where ,
and is the radial component of the magnetic
field. In this coordinate system, the 1+2-dimensional evolution equation
describing the quasi-periodic oscillations, QPOs, see Sotani et al. (2007), is
reduced to a 1+1-dimensional equation, where the perturbations propagate only
along the Y-axis. We solve the 1+1-dimensional equation for different boundary
conditions and open magnetic field lines, i.e., magnetic field lines that reach
the surface and there match up with the exterior dipole magnetic field, as well
as closed magnetic lines, i.e., magnetic lines that never reach the stellar
surface. For the open field lines, we find two families of QPOs frequencies; a
family of "lower" QPOs frequencies which is located near the X-axis and a
family of "upper" frequencies located near the Y-axis. According to Levin
(2007), the fundamental frequencies of these two families can be interpreted as
the turning points of a continuous spectrum. We find that the upper frequencies
are constant multiples of the lower frequencies with a constant equaling 2n+1.
For the closed lines, the corresponding factor is n+1 . By these relations, we
can explain both the lower and the higher observed frequencies in SGR 1806-20
and SGR 1900+14.Comment: 8 pages, 7 figure
Can Maxwell's equations be obtained from the continuity equation?
We formulate an existence theorem that states that given localized scalar and
vector time-dependent sources satisfying the continuity equation, there exist
two retarded fields that satisfy a set of four field equations. If the theorem
is applied to the usual electromagnetic charge and current densities, the
retarded fields are identified with the electric and magnetic fields and the
associated field equations with Maxwell's equations. This application of the
theorem suggests that charge conservation can be considered to be the
fundamental assumption underlying Maxwell's equations.Comment: 14 pages. See the comment: "O. D. Jefimenko, Causal equations for
electric and magnetic fields and Maxwell's equations: comment on a paper by
Heras [Am. J. Phys. 76, 101 (2008)].
The effects of superconductor-stabilizer interfacial resistance on quench of a pancake coil made out of coated conductor
We present the results of numerical analysis of normal zone propagation in a
stack of coated conductors which imitates a pancake coil.
Our main purpose is to determine whether the quench protection quality of such
coils can be substantially improved by increased contact resistance between the
superconducting film and the stabilizer. We show that with increased contact
resistance the speed of normal zone propagation increases, the detection of a
normal zone inside the coil becomes possible earlier, when the peak temperature
inside the normal zone is lower, and stability margins shrink. Thus, increasing
contact resistance may become a viable option for improving the prospects of
coated conductors for high magnets applications.Comment: 9 pages, 4 figure
- …