23,769 research outputs found

    Test results at transonic speeds on a contoured over-the-wing propfan model

    Get PDF
    A semispan wing/body model with a powered highly loaded propeller has been tested to provide data on the propulsion installation drag of advanced propfan-powered aircraft. The model had a supercritical wing with a contoured over-the-wing nacelle. It was tested in the Ames Research Center's (ARC) 14-foot Transonic Wind Tunnel at a total pressure of 1 atm. The test was conducted at angles of attack from -0.5 to 4 deg at Mach numbers ranging from 0.6 to 0.8. The test objectives were to determine propeller performance, exhaust jet effects, propeller slipstream interference drag, and total powerplant installation drag. Test results indicated a total powerplant installation drag of 82 counts (0.0082) at a Mach number of 0.8 and a lift coefficient of 0.5, which is approximately 29 percent of a typical airplane cruise drag

    High Temperature Mixed State c−c-Axis Dissipation in Low Carrier Density Y0.54Pr0.46Ba2Cu3O7−δY_{0.54}Pr_{0.46}Ba_{2}Cu_{3}O_{7-\delta}

    Full text link
    The nature of the out-of-plane dissipation was investigated in underdoped Y0.54Pr0.46Ba2Cu3O7−δY_{0.54}Pr_{0.46}Ba_{2}Cu_{3}O_{7-\delta} single crystals at temperatures close to the critical temperature. For this goal, temperature and angle dependent out-of-plane resistivity measurements were carried out both below and above the critical temperature. We found that the Ambegaokar-Halperin relationship [V. Ambegaokar, and B. I. Halperin, Phys. Rev. Lett. \textbf{22}, 1364 (1969)] depicts very well the angular magnetoresistivity in the investigated range of field and temperature. The main finding is that the in-plane phase fluctuations decouple the layers above the critical temperature and the charge transport is governed only by the quasiparticles. We also have calculated the interlayer Josephson critical current density, which was found to be much smaller than the one predicted by the theory of layered superconductors. This discrepancy could be a result of the d-wave symmetry of the order parameter and/or of the non BCS temperature dependence of the c-axis penetration length.Comment: Will appear in PR

    Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background

    Get PDF
    Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; non-homogeneous, correlated instrumental noise; and foreground emission is a problem of central importance for the extraction of cosmological information from the cosmic microwave background. We develop a Monte Carlo approach for the maximum likelihood estimation of the power spectrum. The method is based on an identity for the Bayesian posterior as a marginalization over unknowns. Maximization of the posterior involves the computation of expectation values as a sample average from maps of the cosmic microwave background and foregrounds given some current estimate of the power spectrum or cosmological model, and some assumed statistical characterization of the foregrounds. Maps of the CMB are sampled by a linear transform of a Gaussian white noise process, implemented numerically with conjugate gradient descent. For time series data with N_{t} samples, and N pixels on the sphere, the method has a computational expense $KO[N^{2} +- N_{t} +AFw-log N_{t}], where K is a prefactor determined by the convergence rate of conjugate gradient descent. Preconditioners for conjugate gradient descent are given for scans close to great circle paths, and the method allows partial sky coverage for these cases by numerically marginalizing over the unobserved, or removed, region.Comment: submitted to Ap

    QND and higher order effects for a nonlinear meter in an interferometric gravitational wave antenna

    Get PDF
    A new optical topology and signal readout strategy for a laser interferometer gravitational wave detector were proposed recently by Braginsky and Khalili . Their method is based on using a nonlinear medium inside a microwave oscillator to detect the gravitational-wave-induced spatial shift of the interferometer's standing optical wave. This paper proposes a quantum nondemolition (QND) scheme that could be realistically used for such a readout device and discusses a "fundamental" sensitivity limit imposed by a higher order optical effect.Comment: LaTex, 17 pages, 3 figure

    Electrostatics of ions inside the nanopores and trans-membrane channels

    Full text link
    A model of a finite cylindrical ion channel through a phospholipid membrane of width LL separating two electrolyte reservoirs is studied. Analytical solution of the Poisson equation is obtained for an arbitrary distribution of ions inside the trans-membrane pore. The solution is asymptotically exact in the limit of large ionic strength of electrolyte on the two sides of membrane. However, even for physiological concentrations of electrolyte, the electrostatic barrier sizes found using the theory are in excellent agreement with the numerical solution of the Poisson equation. The analytical solution is used to calculate the electrostatic potential energy profiles for pores containing charged protein residues. Availability of a semi-exact interionic potential should greatly facilitate the study of ionic transport through nanopores and ion channels

    Thermoelastic Noise and Homogeneous Thermal Noise in Finite Sized Gravitational-Wave Test Masses

    Get PDF
    An analysis is given of thermoelastic noise (thermal noise due to thermoelastic dissipation) in finite sized test masses of laser interferometer gravitational-wave detectors. Finite-size effects increase the thermoelastic noise by a modest amount; for example, for the sapphire test masses tentatively planned for LIGO-II and plausible beam-spot radii, the increase is less than or of order 10 per cent. As a side issue, errors are pointed out in the currently used formulas for conventional, homogeneous thermal noise (noise associated with dissipation which is homogeneous and described by an imaginary part of the Young's modulus) in finite sized test masses. Correction of these errors increases the homogeneous thermal noise by less than or of order 5 per cent for LIGO-II-type configurations.Comment: 10 pages and 3 figures; RevTeX; submitted to Physical Review

    Stereo Computation for a Single Mixture Image

    Full text link
    This paper proposes an original problem of \emph{stereo computation from a single mixture image}-- a challenging problem that had not been researched before. The goal is to separate (\ie, unmix) a single mixture image into two constitute image layers, such that the two layers form a left-right stereo image pair, from which a valid disparity map can be recovered. This is a severely illposed problem, from one input image one effectively aims to recover three (\ie, left image, right image and a disparity map). In this work we give a novel deep-learning based solution, by jointly solving the two subtasks of image layer separation as well as stereo matching. Training our deep net is a simple task, as it does not need to have disparity maps. Extensive experiments demonstrate the efficacy of our method.Comment: Accepted by European Conference on Computer Vision (ECCV) 201
    • …
    corecore