13,948 research outputs found

    Three charged particles in the continuum. Astrophysical examples

    Full text link
    We suggest a new adiabatic approach for description of three charged particles in the continuum. This approach is based on the Coulomb-Fourier transformation (CFT) of three body Hamiltonian, which allows to develop a scheme, alternative to Born-Oppenheimer one. The approach appears as an expansion of the kernels of corresponding integral transformations in terms of small mass-ratio parameter. To be specific, the results are presented for the system ppeppe in the continuum. The wave function of a such system is compared with that one which is used for estimation of the rate for triple reaction p+p+ed+ν, p+p+e\to d+\nu, which take place as a step of pppp-cycle in the center of the Sun. The problem of microscopic screening for this particular reaction is discussed

    Stereo Computation for a Single Mixture Image

    Full text link
    This paper proposes an original problem of \emph{stereo computation from a single mixture image}-- a challenging problem that had not been researched before. The goal is to separate (\ie, unmix) a single mixture image into two constitute image layers, such that the two layers form a left-right stereo image pair, from which a valid disparity map can be recovered. This is a severely illposed problem, from one input image one effectively aims to recover three (\ie, left image, right image and a disparity map). In this work we give a novel deep-learning based solution, by jointly solving the two subtasks of image layer separation as well as stereo matching. Training our deep net is a simple task, as it does not need to have disparity maps. Extensive experiments demonstrate the efficacy of our method.Comment: Accepted by European Conference on Computer Vision (ECCV) 201

    A survey of spinning test particle orbits in Kerr spacetime

    Get PDF
    We investigate the dynamics of the Papapetrou equations in Kerr spacetime. These equations provide a model for the motion of a relativistic spinning test particle orbiting a rotating (Kerr) black hole. We perform a thorough parameter space search for signs of chaotic dynamics by calculating the Lyapunov exponents for a large variety of initial conditions. We find that the Papapetrou equations admit many chaotic solutions, with the strongest chaos occurring in the case of eccentric orbits with pericenters close to the limit of stability against plunge into a maximally spinning Kerr black hole. Despite the presence of these chaotic solutions, we show that physically realistic solutions to the Papapetrou equations are not chaotic; in all cases, the chaotic solutions either do not correspond to realistic astrophysical systems, or involve a breakdown of the test-particle approximation leading to the Papapetrou equations (or both). As a result, the gravitational radiation from bodies spiraling into much more massive black holes (as detectable, for example, by LISA, the Laser Interferometer Space Antenna) should not exhibit any signs of chaos.Comment: Submitted to Phys. Rev. D. Follow-up to gr-qc/0210042. Figures are low-resolution in order to satisfy archive size constraints; a high-resolution version is available at http://www.michaelhartl.com/papers

    Regularized Neural User Model for Goal-Oriented Spoken Dialogue Systems

    Get PDF
    User simulation is widely used to generate artificial dialogues in order to train statistical spoken dialogue systems and perform evaluations. This paper presents a neural network approach for user modeling that exploits an encoder-decoder bidirectional architecture with a regularization layer for each dialogue act. In order to minimize the impact of data sparsity, the dialogue act space is compressed according to the user goal. Experiments on the Dialogue State Tracking Challenge 2 (DSTC2) dataset provide significant results at dialogue act and slot level predictions, outperforming previous neural user modeling approaches in terms of F1 score.Spanish Minister of Science under grants TIN2014-54288-C4-4-R and TIN2017-85854-C4-3-R and by the EU H2020 EMPATHIC project grant number 769872

    Gradient descent learning in and out of equilibrium

    Full text link
    Relations between the off thermal equilibrium dynamical process of on-line learning and the thermally equilibrated off-line learning are studied for potential gradient descent learning. The approach of Opper to study on-line Bayesian algorithms is extended to potential based or maximum likelihood learning. We look at the on-line learning algorithm that best approximates the off-line algorithm in the sense of least Kullback-Leibler information loss. It works by updating the weights along the gradient of an effective potential different from the parent off-line potential. The interpretation of this off equilibrium dynamics holds some similarities to the cavity approach of Griniasty. We are able to analyze networks with non-smooth transfer functions and transfer the smoothness requirement to the potential.Comment: 08 pages, submitted to the Journal of Physics

    Closed form representation for a projection onto infinitely dimensional subspace spanned by Coulomb bound states

    Get PDF
    The closed form integral representation for the projection onto the subspace spanned by bound states of the two-body Coulomb Hamiltonian is obtained. The projection operator onto the n2n^2 dimensional subspace corresponding to the nn-th eigenvalue in the Coulomb discrete spectrum is also represented as the combination of Laguerre polynomials of nn-th and (n1)(n-1)-th order. The latter allows us to derive an analog of the Christoffel-Darboux summation formula for the Laguerre polynomials. The representations obtained are believed to be helpful in solving the breakup problem in a system of three charged particles where the correct treatment of infinitely many bound states in two body subsystems is one of the most difficult technical problems.Comment: 7 page

    Channel-Independent and Sensor-Independent Stimulus Representations

    Full text link
    This paper shows how a machine, which observes stimuli through an uncharacterized, uncalibrated channel and sensor, can glean machine-independent information (i.e., channel- and sensor-independent information) about the stimuli. First, we demonstrate that a machine defines a specific coordinate system on the stimulus state space, with the nature of that coordinate system depending on the device's channel and sensor. Thus, machines with different channels and sensors "see" the same stimulus trajectory through state space, but in different machine-specific coordinate systems. For a large variety of physical stimuli, statistical properties of that trajectory endow the stimulus configuration space with differential geometric structure (a metric and parallel transfer procedure), which can then be used to represent relative stimulus configurations in a coordinate-system-independent manner (and, therefore, in a channel- and sensor-independent manner). The resulting description is an "inner" property of the stimulus time series in the sense that it does not depend on extrinsic factors like the observer's choice of a coordinate system in which the stimulus is viewed (i.e., the observer's choice of channel and sensor). This methodology is illustrated with analytic examples and with a numerically simulated experiment. In an intelligent sensory device, this kind of representation "engine" could function as a "front-end" that passes channel/sensor-independent stimulus representations to a pattern recognition module. After a pattern recognizer has been trained in one of these devices, it could be used without change in other devices having different channels and sensors.Comment: The results of a numerically simulated experiment, which illustrates the proposed method, have been added to the version submitted on October 27, 2004. This paper has been accepted for publication in the Journal of Applied Physics. For related papers, see http://www.geocities.com/dlevin2001
    corecore