645 research outputs found

    Expression of Fluorescent Genes in Trypanosoma cruzi and Trypanosoma rangeli (Kinetoplastida: Trypanosomatidae): Its Application to Parasite-Vector Biology

    Get PDF
    Two Trypanosoma cruzi-derived cloning vectors, pTREX-n and pBs:CalB1/CUB01, were used to drive the expression of green fluorescent protein (GFP) and DsRed in Trypanosoma rangeli Tejera, 1920, and Trypanosoma cruzi Chagas, 1909, isolates, respectively. Regardless of the species, group, or strain, parasites harboring the transfected constructs as either episomes or stable chromosomal integrations showed high-level expression of fluorescent proteins. Tagged flagellates of both species were used to experimentally infect Rhodnius prolixus Stal, 1953. In infected bugs, single or mixed infections of T. cruzi and T. rangeli displayed the typical cycle of each species, with no apparent interspecies interactions. In addition, infection of kidney monkey cells (LLC-MK2) with GFP-T. cruzi showed that the parasite retained its fluorescent tag while carrying out its life cycle within cultured cells. The use of GFP-tagged parasites as a tool for biological studies in experimental hosts is discussed, as is the application of this method for copopulation studies of same-host parasitesFil: Guevara, Palmira. Universidad Central de Venezuela; VenezuelaFil: Dias, Manuel. Universidad de los Andes; ColombiaFil: Rojas, Agustina. Universidad de los Andes; ColombiaFil: Crisante, Gladys. Universidad de los Andes; ColombiaFil: Abreu Blanco, Maria Teresa. Universidad Central de Venezuela; VenezuelaFil: Umezawa, Eufrozina. Universidade de Sao Paulo; BrasilFil: Vazquez, Martin Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Levin, Mariano Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Añez, Nestor. Universidad de los Andes; ColombiaFil: Ramirez, Jose Luis. Instituto de Estudios Avanzados; Venezuel

    Molecular epidemiology of domestic and sylvatic Trypanosoma cruzi infection in rural northwestern Argentina

    Get PDF
    Genetic diversity of Trypanosoma cruzi populations and parasite transmission dynamics have been well documented throughout the Americas, but few studies have been conducted in the Gran Chaco ecoregion, one of the most highly endemic areas for Chagas disease, caused by T. cruzi. In this study, we assessed the distribution of T. cruzi lineages (identified by PCR strategies) in Triatoma infestans, domestic dogs, cats, humans and sylvatic mammals from two neighbouring rural areas with different histories of transmission and vector control in northern Argentina. Lineage II predominated amongst the 99 isolates characterised and lineage I amongst the six isolates obtained from sylvatic mammals. T. cruzi lineage IIe predominated in domestic habitats; it was found in 87% of 54 isolates from Tr. infestans, in 82% of 33 isolates from dogs, and in the four cats found infected. Domestic and sylvatic cycles overlapped in the study area in the late 1980s, when intense domestic transmission occurred, and still overlap marginally. The introduction of T. cruzi from sylvatic into domestic habitats is likely to occur very rarely in the current epidemiological context. The household distribution of T. cruzi lineages showed that Tr. infestans, dogs and cats from a given house compound shared the same parasite lineage in most cases. Based on molecular evidence, this result lends further support to the importance of dogs and cats as domestic reservoir hosts of T. cruzi. We believe that in Argentina, this is the first time that lineage IIc has been isolated from naturally infected domestic dogs and Tr. infestans.Fil: Cardinal, Marta Victoria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Lauricella, Marta A.. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud “Dr. C.G. Malbrán”. Instituto Nacional de Parasitología “Dr. M. Fatala Chabén”; ArgentinaFil: Ceballos, Leonardo A.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Lanati, Leonardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; ArgentinaFil: Marcet, Paula Lorena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Levin, Mariano Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Kitron, Uriel D.. Emory University; Estados UnidosFil: Gurtler, Ricardo Esteban. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Schijman, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin

    Molecular diagnosis and typing of Trypanosoma cruzi populations and lineages in cerebral Chagas disease in a patient with AIDS

    Get PDF
    Trypanosoma cruzi DNA was amplified from an intracranial biopsy and peripheral blood of an HIV patient with encephalitis; this episode was indicative of AIDS and congenital Chagas disease. The analysis of a microsatellite locus revealed a multiclonal parasite population at the brain lesion with a more complex minicircle signature than that profiled in blood using restriction fragment length polymorphism (RFLP)-PCR and low stringency single primer (LSSP) PCR. Interestingly, different sublineages of T. cruzi II were detected in blood and brain by means of spliced-leader and 24s ribosomal-DNA amplifications. Quantitative-competitive PCR monitored the decrease of parasitic load during treatment and secondary prophylaxis with benznidazole. The synergy between parasiticidal plus antiretroviral treatments probably allowed the patient a longer survival than usually achieved in similar episodes. This is the first case report demonstrating a differential distribution of natural parasite populations and sublineages in Chagas disease reactivation, showing the proliferation of cerebral variants not detectable in peripheral blood.Fil: Burgos, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Bergher, Sandra B.. Gobierno de la Ciudad de Buenos Aires. Hospital "Ignacio Pirovano"; ArgentinaFil: Freitas, Jorge M.. Universidade Federal de Minas Gerais; BrasilFil: Bisio, Margarita María Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Altcheh, Jaime Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Teijeiro, Ricardo. Gobierno de la Ciudad de Buenos Aires. Hospital "Ignacio Pirovano"; ArgentinaFil: Begher, Sandra B.. Gobierno de la Ciudad de Buenos Aires. Hospital "Ignacio Pirovano"; ArgentinaFil: Freilij, Hector León. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Deccarlini, Florencia. Gobierno de la Ciudad de Buenos Aires. Hospital "Ignacio Pirovano"; ArgentinaFil: Levalle, Jorge. Gobierno de la Ciudad de Buenos Aires. Hospital "Ignacio Pirovano"; ArgentinaFil: Lopez Alcoba, Horacio. Gobierno de la Ciudad de Buenos Aires. Hospital "Ignacio Pirovano"; ArgentinaFil: Burgos, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Levin, Mariano Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Duffy, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Macedo, Andrea M.. Universidade Federal de Minas Gerais; BrasilFil: Schijman, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin

    Linajes de Trypanosoma cruzi en pacientes con enfermedad de Chagas y coinfección por VIH

    Get PDF
    Introducción. Las poblaciones naturales de T. cruzi han sido clasificadas en seis linajes filogenéticos o unidades de tipificación discreta: T. cruzi I, IIa, IIb, IIc, IId y IIe, que pueden jugar un rol en el tropismo tisular y patogénesis de la enfermedad de Chagas. El impacto de la infección por VIH en la diversidad genética de T. cruzi en pacientes coinfectados es un campo poco explorado en parasitología. Objetivo. Caracterizar linajes de poblaciones parasitarias naturales en muestras clínicas de pacientes coinfectados por T. cruzi y VIH. Materiales y Métodos. Se analizaron muestras de sangre y/o lesiones de 25 pacientes residentes en Argentina: 8 pediátricos nacidos de 7 madres coinfectadas, 3 adultos con Chagas indeterminado y VIH y 7 con encefalitis chagásica por SIDA. El diagnóstico molecular y seguimiento de tratamiento etiológico se realizó por PCR hacia secuencias del minicírculo y/o satélite. Los linajes de T. cruzi fueron identificados por PCR para fragmentos de genes para miniexón y ARN ribosomal 24s. La diversidad infra-linaje fue caracterizada por polimorfismo de fragmentos de restricción de las regiones variables del minicírculo. Resultados. De las 7 madres coinfectadas, 2 transmitieron tanto VIH como T. cruzi a sus hijos y 4 sólo transmitieron T. cruzi. El otro caso fue una mujer embarazada que al entrar en coma por presentar un cuadro de Chagas cerebral fue tratada con Benznidazol y no transmitió ni Chagas ni VIH a su hija. En los casos tratados se observó la negativización de la PCR. La mayoría de las poblaciones parasitarias sanguíneas fueron T. cruzi IId, con perfiles de minicírculos particulares de cada paciente, excepto en pares madre-niño infectados, en que resultaron idénticas. Se hallaron poblaciones mixtas con T. cruzi I-IId. En pacientes con reactivación chagásica se encontró tropismo diferencial de T. cruzi IIb y T. cruzi I en lesiones. En estos pacientes los perfiles de minicírculos mostraron patrones complejos sugiriendo poblaciones policlonales. Conclusiones. La elevada proporción de muestras PCR positivas es indicativa de cargas parasitarias más elevadas que en población chagásica sin VIH. Esta exacerbación estaría también implicada en la alta tasa de transmisión vertical. La prevalencia de linaje IId en sangre periférica concuerda con lo hallado en población chagásica en la región. La asociación de linajes infrecuentes en lesiones asociadas a encefalitis chagásica sugiere tropismo diferencial. El análisis directo de linajes parasitarios en muestras clínicas permitió detectar una mayor prevalencia de infecciones mixtas que la detectada a partir de aislamientos en cultivo.Background. Natural populations of T. cruzi have been classified into six phylogenetic lineages or discrete typing units, T. cruzi I, IIa, IIb, IIc, IId, and IIe, believed to play a role in tissue tropism and disease pathogenesis. The impact of HIV infection in the T. cruzi genetic diversity in coinfected patients is a scarcely explored field of parasitology. Objective. To characterize parasitic lineages in clinical samples from patients co-infected with T. cruzi and HIV Materials and Methods. We analyzed blood and lesions samples from 25 patients residing in Argentina, namely 8 infants born to 7 HIV - T. cruzi co-infected mothers, 3 indeterminate adult chagasic patients with HIV co-infection and 7 presenting cerebral Chagas due to AIDS. Molecular diagnosis and monitoring of etiological treatment was carried out by PCR targeted to kinetoplastid (kDNA) and/or satellite sequences. T. cruzi lineages were identified by means of PCR targeted to the intergenic spacer of miniexon gene and 24s ribosomal ARN genes. To characterize the infra-lineage diversity, restriction fragment length polymorphism (RFLP) of KDNA amplicons was carried out. Results. Out of the 7 co-infected mothers, two transmitted both HIV and T. cruzi to their siblings, four transmitted only T. cruzi. The remaining case was a pregnant woman with cerebral Chagas disease who entered into a coma being treated with benznidazole; she did not transmit congenital Chagas disease nor HIV to her newborn. Most bloodstream populations belonged to T. cruzi IId, with unique minicircle signatures for each patient´s strain, but identical signatures between strains from mothers and their congenitally infected infants. Mixtures of lineages T. cruzi I and T. cruzi IId were also detected. Differential tissue tropism of T. cruzi IIb and T. cruzi I was found in patients with cerebral chagas. Minicircle signatures showed complex patterns suggestive of polyclonal populations. Conclusions. The higher proportion of PCR positive samples suggests higher parasite loads that in chagasic population without HIV. The higher prevalence of T. cruzi IId in bloodstream is in agreement with previous findings in this region. The association of rare lineages at sites of encephalytis suggests differential tropism. The direct characterization of parasite lineages in clinical samples allowed identification of a higher prevalence of mixed infections, than previously assumed, from studies based on culture isolates.Fil: Bisio, Margarita María Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Cura, Carolina Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Duffy, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Altcheh, Jaime Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Giganti, Salvador Óscar. Servicios de Neurocirugía y Clínica Médica; ArgentinaFil: Begher, Sandra. Gobierno de la Ciudad de Buenos Aires. Hospital de Agudos "Ignacio Pirovano"; ArgentinaFil: Scapellato, Pablo Gustavo. Gobierno de la Ciudad de Buenos Aires. Hospital de Agudos "D. F. Santojanni"; ArgentinaFil: Burgos, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Levin, Mariano Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Schreck, Ricardo. Servicios de Neurocirugía y Clínica Médica; ArgentinaFil: Freilij, Hector León. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños "Ricardo Gutiérrez"; ArgentinaFil: Schijman, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin

    Molecular Identification of Trypanosma cruzi discrete Typing Units in end-Stage Chronic Chagas Heart Disease and Reactivation after Heart Transplantation

    Get PDF
    One hundred years after the discovery of Chagas disease, it remains a major neglected tropical disease. Chronic Chagas heart disease is the most severe manifestation. Heart trasplantation is the proper treatment for end-stage heart failure. T. cruzi strains cluster into 6 discrete typing units assosiated with different geographical distribution, transmission cycles and varying disease symptoms.In the southern cone of South America, T. cruzi II, V and VI popuations appear to be assosiated with Chagas disease and T. cruzi I with sylvatic cycles.Fil: Burgos, Juan Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - la Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Invest. Biotec. (subsede San Martin) | Universidad Nacional de San Martin. Instituto de Investigaciones Biotecnológicas. Instituto de Invest. Biotec. (subsede San Martin); Argentina. Laboratorio Biología Molecular de Enfermedad de Chagas; ArgentinaFil: Diez, Mirta. Universidad Favaloro; ArgentinaFil: Vigliano, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Favaloro; ArgentinaFil: Bisio, Margarita María Catalina. Gobierno de la Ciudad de Buenos Aires. Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas; ArgentinaFil: Risso, Marikena Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Duffi, Tomas. Laboratorio Biología Molecular de Enfermedad de Chagas; ArgentinaFil: Cura, Carolina Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres". Grupo Vinculado al INGEBI- Laboratorio de Biocatálisis y Biotransformaciones - LBB - UNQUI; ArgentinaFil: Brusés, Bettina Laura. Universidad Nacional del Nordeste. Instituto de Medicina Regional; ArgentinaFil: Favaloro, Liliana Ethel. Universidad Favaloro; ArgentinaFil: Leguizamon, María Susana. Dirección Nacional de Instituto de Investigación.Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán"; ArgentinaFil: Lucero, Raúl Horacio. Universidad Nacional del Nordeste. Instituto de Medicina Regional; ArgentinaFil: Laguens, Rubén. Universidad Favaloro; ArgentinaFil: Levin, Mariano Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigación en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres". Grupo Vinculado al INGEBI- Laboratorio de Biocatálisis y Biotransformaciones - LBB - UNQUI; ArgentinaFil: Favaloro, Roberto René. Universidad Favaloro; ArgentinaFil: Schijman, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Laboratorio Biología Molecular de Enfermedad de Chagas; Argentin

    Accurate Real-Time PCR Strategy for Monitoring Bloodstream Parasitic Loads in Chagas Disease Patients

    Get PDF
    Infection with the parasite Trypanosoma cruzi (T. cruzi), causing American trypanosomiasis or Chagas disease, remains a major public health concern in 21 endemic countries of America, with an estimated prevalence of 8 million infected people. Chagas disease shows a variable clinical course, ranging from asymptomatic to chronic stages with low parasitaemias, whose severest form is heart disease. Diagnosis at the asymptomatic and chronic stages is based on serological detection of anti-T. cruzi antibodies, because conventional parasitological methods lack sensitivity. Current chemotherapies are more effective in recent infections than in the chronic adult population. The criterion of cure relies on serological conversion to negative, which may occur only years after treatment, requiring long-term follow-up. In this context, we aimed to develop a real-time PCR assay targeted to repetitive sequences of T. cruzi for sensitive quantitation of parasitic load in peripheral blood of infected patients. It was applied to monitor treatment response of infected children, allowing rapid evaluation of drug efficacy as well as detection of treatment failure. It was also used for early diagnosis of chagasic reactivation in end-stage heart disease patients who received immunosuppressive drugs after cardiac transplantation. This laboratory strategy may constitute a novel parasitological tool for prompt and sensitive evaluation of anti-parasitic treatment of Chagas disease

    Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters

    Get PDF
    [EN] Background: Even though virtual reality (VR) is increasingly used in rehabilitation, the implementation of walking navigation in VR still poses a technological challenge for current motion tracking systems. Different metaphors simulate locomotion without involving real gait kinematics, which can affect presence, orientation, spatial memory and cognition, and even performance. All these factors can dissuade their use in rehabilitation. We hypothesize that a marker-based head tracking solution would allow walking in VR with high sense of presence and without causing sickness. The objectives of this study were to determine the accuracy, the jitter, and the lag of the tracking system and its elicited sickness and presence in comparison of a CAVE system. Methods: The accuracy and the jitter around the working area at three different heights and the lag of the head tracking system were analyzed. In addition, 47 healthy subjects completed a search task that involved navigation in the walking VR system and in the CAVE system. Navigation was enabled by natural locomotion in the walking VR system and through a specific device in the CAVE system. An HMD was used as display in the walking VR system. After interacting with each system, subjects rated their sickness in a seven-point scale and their presence in the Slater-Usoh-Steed Questionnaire and a modified version of the Presence Questionnaire. Results: Better performance was registered at higher heights, where accuracy was less than 0.6 cm and the jitter was about 6 mm. The lag of the system was 120 ms. Participants reported that both systems caused similar low levels of sickness (about 2.4 over 7). However, ratings showed that the walking VR system elicited higher sense of presence than the CAVE system in both the Slater-Usoh-Steed Questionnaire (17.6 +/- 0.3 vs 14.6 +/- 0.6 over 21, respectively) and the modified Presence Questionnaire (107.4 +/- 2.0 vs 93.5 +/- 3.2 over 147, respectively). Conclusions: The marker-based solution provided accurate, robust, and fast head tracking to allow navigation in the VR system by walking without causing relevant sickness and promoting higher sense of presence than CAVE systems, thus enabling natural walking in full-scale environments, which can enhance the ecological validity of VR-based rehabilitation applications.The authors wish to thank the staff of LabHuman for their support in this project, especially José Miguel Martínez and José Roda for their assistance. This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project NeuroVR, TIN2013-44741-R and Project REACT, TIN2014-61975-EXP), by Ministerio de Educacion y Ciencia of Spain (Project Consolider-C, SEJ2006-14301/PSIC), and by Universitat Politecnica de Valencia (Grant PAID-10-14).Borrego, A.; Latorre Grau, J.; Llorens Rodríguez, R.; Alcañiz Raya, ML.; Noé, E. (2016). Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. Journal of NeuroEngineering and Rehabilitation. 13:1-9. https://doi.org/10.1186/s12984-016-0174-1S1913Lee KM. Presence. Explicated Communication Theory. 2004;14(1):27–50.Riva G. Is presence a technology issue? Some insights from cognitive sciences. Virtual Reality. 2009;13(3):159–69.Banos RM, et al. Immersion and emotion: their impact on the sense of presence. Cyberpsychol Behav. 2004;7(6):734–41.Llorens R, et al. Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario. Sensors (Basel). 2015;15(3):6586–606.Navarro MD, et al. Validation of a low-cost virtual reality system for training street-crossing. A comparative study in healthy, neglected and non-neglected stroke individuals. Neuropsychol Rehabil. 2013;23(4):597–618.Parsons TD. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front Hum Neurosci. 2015;9:660.Cameirao MS, et al. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil. 2010;7:48.Llorens R, et al. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clin Rehabil. 2015;29(3):261–8.Llorens R, et al. Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury. J Neuroeng Rehabil. 2015;12:37.Fong KN, et al. Usability of a virtual reality environment simulating an automated teller machine for assessing and training persons with acquired brain injury. J Neuroeng Rehabil. 2010;7:19.Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015;95(3):415–25.Llorens R, et al. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418–25. e2.Cruz-Neira C, et al. Scientists in wonderland: A report on visualization applications in the CAVE virtual reality environment. In: 1993. Proceedings IEEE 1993 Symposium on Research Frontiers in Virtual Reality. 1993.Juan MC, Perez D. Comparison of the levels of presence and anxiety in an acrophobic environment viewed via HMD or CAVE. Presence. 2009;18(3):232–48.Yang YR, et al. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture. 2008;28(2):201–6.Cho KH, Lee WH. Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study. Am J Phys Med Rehabil. 2013;92(5):371–84.Darter BJ, Wilken JM. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation. Phys Ther. 2011;91(9):1385–94.Yang S, et al. Improving balance skills in patients who had stroke through virtual reality treadmill training. Am J Phys Med Rehabil. 2011;90(12):969–78.Walker ML, et al. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. Arch Phys Med Rehabil. 2010;91(1):115–22.Riley PO, et al. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture. 2007;26(1):17–24.Alton F, et al. A kinematic comparison of overground and treadmill walking. Clin Biomech. 1998;13(6):434–40.Lee SJ, Hidler J. Biomechanics of overground vs. treadmill walking in healthy individuals. J Appl Physiol. 2008;104(3).Slater M. Measuring presence: a response to the witmer and Singer presence questionnaire. Presence. 1999;8(5):560–5.Viau A, et al. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil. 2004;1(1):11.Parsons TD, et al. The potential of function-led virtual environments for ecologically valid measures of executive function in experimental and clinical neuropsychology. Neuropsychol Rehabil. 2015;11:1–31. doi: 10.1080/09602011.2015.1109524 .Aravind G, Lamontagne A. Perceptual and locomotor factors affect obstacle avoidance in persons with visuospatial neglect. J Neuroeng Rehabil. 2014;11:38.Darekar A, Lamontagne A, Fung J. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment. Hum Mov Sci. 2015;40:359–71.Whittle MW. Chapter 4 - Methods of gait analysis. In: Whittle MW, editor. Gait analysis. Edinburgh: Butterworth-Heinemann; 2007. p. 137–75.Hodgson E, et al. WeaVR: a self-contained and wearable immersive virtual environment simulation system. Behav Res Methods. 2015;47(1):296–307.Akizuki H, et al. Effects of immersion in virtual reality on postural control. Neurosci Lett. 2005;379(1):23–6.Thies SB, et al. Comparison of linear accelerations from three measurement systems during "reach & grasp". Med Eng Phys. 2007;29(9):967–72.Fiala M. Designing highly reliable fiducial markers. IEEE Trans Pattern Anal Mach Intell. 2010;32(7):1317–24.Garrido-Jurado S, et al. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition. 2014;47(6):2280–92.Kim K, et al. Effects of virtual environment platforms on emotional responses. Comput Methods Programs Biomed. 2014;113(3):882–93.Slater M, Steed A. A virtual presence counter. Presence. 2000;9(5):413–34.Witmer BG, Singer MJ. Measuring presence in virtual environments: a presence questionnaire. Presence Teleop Virt. 1998;7(3):225–40.Martín-Gutiérrez J, et al. Design and validation of an augmented book for spatial abilities development in engineering students. Comput Graph. 2010;34(1):77–91.Lopez-Mir F, et al. Design and validation of an augmented reality system for laparoscopic surgery in a real environment. Biomed Res Int. 2013;2013:758491.Abawi DF, Bienwald J, Dorner R. Accuracy in optical tracking with fiducial markers: an accuracy function for ARToolKit. In: Third IEEE and ACM International symposium on mixed and augmented reality, ISMAR 2004. 2004.Malbezin P, Piekarski W, Thomas BH. Measuring ARTootKit accuracy in long distance tracking experiments. In: The first IEEE International workshop augmented reality toolkit. 2002.Paquette C, Paquet N, Fung J. Aging affects coordination of rapid head motions with trunk and pelvis movements during standing and walking. Gait Posture. 2006;24(1):62–9.Graham JE, et al. Walking speed threshold for classifying walking independence in hospitalized older adults. Phys Ther. 2010;90(11):1591–7.Gorea A. A refresher of the original Bloch’s Law paper (bloch, july 1885). i-Perception. 2015;6:4.Moss JD, Muth ER. Characteristics of head-mounted displays and their effects on Simulator sickness. Hum Factors. 2011;53(3):308–19.Draper MH, et al. Effects of image scale and system time delay on Simulator sickness within head-coupled virtual environments. Hum Factors. 2001;43(1):129–46.Fujisaki W. Effects of delayed visual feedback on grooved pegboard test performance. Front Psychol. 2012;3:61.Keshner EA, et al. Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1379–82.Slaboda JC, Keshner EA. Reorientation to vertical modulated by combined support surface tilt and virtual visual flow in healthy elders and adults with stroke. J Neurol. 2012;259(12):2664–72.Tossavainen T. Comparison of CAVE and HMD for visual stimulation in postural control research. Stud Health Technol Inform. 2004;98:385–7.Akiduki H, et al. Visual-vestibular conflict induced by virtual reality in humans. Neurosci Lett. 2003;340(3):197–200.Duh HBL, et al. Effects of field of view on balance in an immersive environment. In: Virtual Reality, 2001. Proceedings. IEEE. 2001.Krijn M, et al. Treatment of acrophobia in virtual reality: the role of immersion and presence. Behav Res Ther. 2004;42(2):229–39.Mania K, Chalmers A. The effects of levels of immersion on memory and presence in virtual environments: a reality centered approach. Cyberpsychol Behav. 2001;4(2):247–64.Gorini A, et al. The role of immersion and narrative in mediated presence: the virtual hospital experience. Cyberpsychol Behav Soc Netw. 2011;14(3):99–105.Fromberger P, et al. Virtual viewing time: the relationship between presence and sexual interest in androphilic and gynephilic Men. PLoS One. 2015;10(5), e0127156.Slater M, et al. Visual realism enhances realistic response in an immersive virtual environment. IEEE Comput Graph Appl. 2009;29(3):76–84.Nir-Hadad SY, et al. A virtual shopping task for the assessment of executive functions: Validity for people with stroke. Neuropsychol Rehabil. 2015;11:1–26. doi: 10.1080/09602011.2015.1109523 .Vasilyeva M, Lourenco SF. Development of spatial cognition. Wiley Interdiscip Rev Cogn Sci. 2012;3(3):349–62.Banakou D, Groten R, Slater M. Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc Natl Acad Sci U S A. 2013;110(31):12846–51.Yee N, Bailenson JN, Ducheneaut N. The proteus effect: implications of transformed digital self-representation on online and offline behavior. Commun Res. 2009;36(2):285–312.Baylor AL. Promoting motivation with virtual agents and avatars: role of visual presence and appearance. Philos Trans R Soc Lond B Biol Sci. 2009;364(1535):3559–65.Clemente M, et al. Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Sys App. 2014;41(4, Part 2):1584–92.Clemente M, et al. An fMRI study to analyze neural correlates of presence during virtual reality experiences. 2013. Interacting with Computers

    The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30

    No full text
    In trypanosomes transcription is polycistronic and individual mRNAs are generated by a trans-splicing/polyadenylation coupled reaction. We identified a divergent trypanosome FIP1-like, a factor required for mRNA 3′ end formation from yeasts to human. Here we showed that it is a nuclear protein with a speckled distribution essential for trypanosome viability. A strong interaction was found between TcFIP1-like and TcCPSF30, a component of the polyadenylation complex. We determined the specific amino acids in each protein involved in the interaction. Significant differences were found between the trypanosome interaction surface and its human counterpart. Although CPSF30/FIP1 interaction is known in other organisms, this is the first report mapping the interaction surface at the amino acid level.Fil: Bercovich, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Levin, Mariano Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Vazquez, Martin Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentin

    Overexpression and refolding of the hydrophobic ribosomal P0 protein from Trypanosoma cruzi: A component of the P1/P2/P0 complex

    Get PDF
    The P0 protein is part of the ribosomal eukaryotic stalk, which is an elongated lateral protuberance of the large ribosomal subunit involved in the translocation step of protein synthesis. P0 is the minimal portion of the stalk that is able to support accurate protein synthesis. The P0 C-terminal peptide is highly antigenic and a major target of the antibody response in patients with systemic lupus erythematosus and patients suffering chronic heart disease produced by the Trypanosoma cruzi parasite. The T. cruzi P0 (TcP0) protein was cloned into the pRSET A vector and expressed in Escherichia coli fused to a His-tag. The identity of the protein was confirmed by immunoblotting. Due to the formation of inclusion bodies the protein was purified using the following steps: (i) differential centrifugation to separate the inclusion bodies from soluble proteins and (ii) affinity chromatography under denaturing conditions. TcP0 showed high tendency to aggregation during refolding assays. However, TcP0 could be efficiently folded in the presence of a low concentration of SDS. The folding of the protein was confirmed using urea gradient electrophoresis, limited proteolysis, circular dichroism, and tryptophan fluorescence. Native electrophoresis showed that the folded TcP0 (and not a folding intermediate) was the cause of aggregation in the absence of SDS. The protocol described here permitted us to obtain large amounts (up to 30 mg per culture liter) of pure and folded TcP0, a very hydrophobic protein with a high tendency to aggregation.Fil: Juri Ayub, Maximiliano. Universidad Nacional de San Luis; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Levin, Mariano Jorge. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Aguilar, Carlos Fernando. Universidad Nacional de San Luis; Argentin
    corecore