27,908 research outputs found

    Refractory porcelain enamel passive-thermal-control coating for high-temperature superalloys

    Get PDF
    Study was conducted to match thermal expansion coefficients thereby preventing enamels from cracking. Report discusses various enamel coatings that are applied to two different high-temperature superalloys. Study may be of interest to manufacturers of chemical equipment, furnaces, and metal components intended for high-temperature applications

    Improved magnesia for thermal control coatings

    Get PDF
    Formation of radiation-generated color centers using single crystals of magnesium oxide is discussed. Crystal structure of magnesium oxide is described. Chemical processes used to produce magnesium oxide with desired color center kinetics are presented. Proton irradiation of magnesium oxide crystals was conducted to determine lattice defects

    Hadron multiplicity in pp and AA collisions at LHC from the Color Glass Condensate

    Full text link
    We provide quantitative predictions for the rapidity, centrality and energy dependencies of inclusive charged-hadron productions for the forthcoming LHC measurements in nucleus-nucleus collisions based on the idea of gluon saturation in the color-glass condensate framework. Our formulation gives very good descriptions of the first data from the LHC for the inclusive charged-hadron production in proton-proton collisions, the deep inelastic scattering at HERA at small Bjorken-x, and the hadron multiplicities in nucleus-nucleus collisions at RHIC.Comment: 7 pages, 8 figures; v3: minor changes, one reference added, results unchanged, the version to appear in Phys. Rev.

    Predictions for Impurity-Induced Tc Suppression in the High-Temperature Superconductors

    Full text link
    We address the question of whether anisotropic superconductivity is compatible with the evidently weak sensitivity of the critical temperature Tc to sample quality in the high-Tc copper oxides. We examine this issue quantitatively by solving the strong-coupling Eliashberg equations numerically as well as analytically for s-wave impurity scattering within the second Born approximation. For pairing interactions with a characteristically low energy scale, we find an approximately universal dependence of the d-wave superconducting transition temperature on the planar residual resistivity which is independent of the details of the microscopic pairing. These results, in conjunction with future systematic experiments, should help elucidate the symmetry of the order parameter in the cuprates.Comment: 13 pages, 4 figures upon request, revtex version

    Elastic scattering and the proton form factor

    Full text link
    We compute the differential and the total cross sections for pppp scattering using the QCD pomeron model proposed by Landshoff and Nachtmann. This model is quite dependent on the experimental electromagnetic form factor, and it is not totally clear why this form factor gives good results even at moderate transferred momentum. We exchange the eletromagnetic form factor by the asymptotic QCD proton form factor determined by Brodsky and Lepage (BL) plus a prescription for its low energy behavior dictated by the existence of a dynamically generated gluon mass. We fit the data with this QCD inspired form factor and a value for the dynamical gluon mass consistent with the ones determined in the literature. Our results also provide a new determination of the proton wave function at the origin, which appears in the BL form factor.Comment: 10 pages, 2 figures. Submitted to Physics Letters B. Submitted to Phys. Lett.

    Monopole solutions to the Bogomolny equation as three-dimensional generalizations of the Kronecker series

    Full text link
    The Dirac monopole on a three-dimensional torus is considered as a solution to the Bogomolny equation with non-trivial boundary conditions. The analytical continuation of the obtained solution is shown to be a three-dimensional generalization of the Kronecker series. It satisfies the corresponding functional equation and is invariant under modular transformations.Comment: 13 pages, 1 figur

    Hybrid vehicle assessment. Phase 1: Petroleum savings analysis

    Get PDF
    The results of a comprehensive analysis of near term electric hybrid vehicles are presented, with emphasis on their potential to save significant amounts of petroleum on a national scale in the 1990s. Performance requirements and expected annual usage patterns of these vehicles are first modeled. The projected U.S. fleet composition is estimated, and conceptual hybrid vehicle designs are conceived and analyzed for petroleum use when driven in the expected annual patterns. These petroleum consumption estimates are then compared to similar estimates for projected 1990 conventional vehicles having the same performance and driven in the same patterns. Results are presented in the form of three utility functions and comparisons of sevral conceptual designs are made. The Hybrid Vehicle (HV) design and assessment techniques are discussed and a general method is explained for selecting the optimum energy management strategy for any vehicle mission battery combination. Conclusions and recommendations are presented, and development recommendations are identified

    Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background

    Get PDF
    Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; non-homogeneous, correlated instrumental noise; and foreground emission is a problem of central importance for the extraction of cosmological information from the cosmic microwave background. We develop a Monte Carlo approach for the maximum likelihood estimation of the power spectrum. The method is based on an identity for the Bayesian posterior as a marginalization over unknowns. Maximization of the posterior involves the computation of expectation values as a sample average from maps of the cosmic microwave background and foregrounds given some current estimate of the power spectrum or cosmological model, and some assumed statistical characterization of the foregrounds. Maps of the CMB are sampled by a linear transform of a Gaussian white noise process, implemented numerically with conjugate gradient descent. For time series data with N_{t} samples, and N pixels on the sphere, the method has a computational expense $KO[N^{2} +- N_{t} +AFw-log N_{t}], where K is a prefactor determined by the convergence rate of conjugate gradient descent. Preconditioners for conjugate gradient descent are given for scans close to great circle paths, and the method allows partial sky coverage for these cases by numerically marginalizing over the unobserved, or removed, region.Comment: submitted to Ap

    Elliptic Schlesinger system and Painlev{\'e} VI

    Full text link
    We construct an elliptic generalization of the Schlesinger system (ESS) with positions of marked points on an elliptic curve and its modular parameter as independent variables (the parameters in the moduli space of the complex structure). ESS is a non-autonomous Hamiltonian system with pair-wise commuting Hamiltonians. The system is bihamiltonian with respect to the linear and the quadratic Poisson brackets. The latter are the multi-color generalization of the Sklyanin-Feigin-Odeskii classical algebras. We give the Lax form of the ESS. The Lax matrix defines a connection of a flat bundle of degree one over the elliptic curve with first order poles at the marked points. The ESS is the monodromy independence condition on the complex structure for the linear systems related to the flat bundle. The case of four points for a special initial data is reduced to the Painlev{\'e} VI equation in the form of the Zhukovsky-Volterra gyrostat, proposed in our previous paper.Comment: 16 pages; Dedicated to the centenary of the publication of the Painleve VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190
    • …
    corecore