29,206 research outputs found

    The flight demonstration program and selection process

    Get PDF
    The Orbital Refueling System (ORS); force torque sensor; Plasma Motor/Generator (PMG) proof of function; voice controlled system; infrared intercommunications; superfluid helium on orbit transfer; laser docking sensor; and the Small Expendable Deployment System (SEDS) are summarized

    Crafting a Class: The Trade Off Between Merit Scholarships and Enrolling Lower-Income Students

    Get PDF
    [Excerpt] It is well-known that test scores are correlated with students’ socio-economic backgrounds. Hence to the extent that colleges are successful in “buying” higher test score students, one should expect that their enrollment of students from families in the lower tails of the family income distribution should decline. However, somewhat surprisingly, there have been no efforts to test if this is occurring. Our paper presents such a test. While institutional level data on the dollar amounts of merit scholarships offered by colleges and universities are not available, data are available on the number of National Merit Scholarship (henceforth NMS) winners attending an institution on scholarships that have been funded by the institution itself, rather than the National Merit Scholarship Corporation (henceforth NMSC). These institutional scholarships are awarded to high test score students only if they attend the institution. Our research strategy is to estimate if an increase in the number of recipients of these scholarships at an institution is associated with a decline in the number of students from lower and lower middle income families attending the institution, other factors held constant. We measure the number of these students by the number of Pell Grant recipients attending the institution

    Knowing one's place: a free-energy approach to pattern regulation.

    Get PDF
    Understanding how organisms establish their form during embryogenesis and regeneration represents a major knowledge gap in biological pattern formation. It has been recently suggested that morphogenesis could be understood in terms of cellular information processing and the ability of cell groups to model shape. Here, we offer a proof of principle that self-assembly is an emergent property of cells that share a common (genetic and epigenetic) model of organismal form. This behaviour is formulated in terms of variational free-energy minimization-of the sort that has been used to explain action and perception in neuroscience. In brief, casting the minimization of thermodynamic free energy in terms of variational free energy allows one to interpret (the dynamics of) a system as inferring the causes of its inputs-and acting to resolve uncertainty about those causes. This novel perspective on the coordination of migration and differentiation of cells suggests an interpretation of genetic codes as parametrizing a generative model-predicting the signals sensed by cells in the target morphology-and epigenetic processes as the subsequent inversion of that model. This theoretical formulation may complement bottom-up strategies-that currently focus on molecular pathways-with (constructivist) top-down approaches that have proved themselves in neuroscience and cybernetics

    Kinetic Inflation in Stringy and Other Cosmologies

    Get PDF
    An inflationary epoch driven by the kinetic energy density in a dynamical Planck mass is studied. In the conformally related Einstein frame it is easiest to see the demands of successful inflation cannot be satisfied by kinetic inflation alone. Viewed in the original Jordan-Brans-Dicke frame, the obstacle is manifest as a kind of graceful exit problem and/or a kind of flatness problem. These arguments indicate the weakness of only the simplest formulation. {}From them can be gleaned directions toward successful kinetic inflation.Comment: 26 pages, LaTeX, CITA-94-2

    Normal zone in YBa2Cu3O6+xYBa_2Cu_3O_{6+x}-coated conductors

    Full text link
    We consider the distribution of an electric field in YBCO-coated conductors for a situation in which the DC transport current is forced into the copper stabilizer due to a weak link -- a section of the superconducting film with a critical current less than the transport current. The electric field in the metal substrate is also discussed. The results are compared with recent experiments on normal zone propagation in coated conductors for which the substrate and stabilizer are insulated from each other. The potential difference between the substrate and stabilizer, and the electric field in the substrate outside the normal zone can be accounted for by a large screening length in the substrate, comparable to the length of the sample. During a quench, the electric field inside the interface between YBCO and stabilizer, as well as in the buffer layer, can be several orders of magnitude greater than the longitudinal macroscopic electric field inside the normal zone. We speculate on the possibility of using possible microscopic electric discharges caused by this large (\sim kV/cm) electric field as a means to detect a quench.Comment: 8 pages, 4 figure

    A mean field approach for string condensed states

    Full text link
    We describe a mean field technique for quantum string (or dimer) models. Unlike traditional mean field approaches, the method is general enough to include string condensed phases in addition to the usual symmetry breaking phases. Thus, it can be used to study phases and phases transitions beyond Landau's symmetry breaking paradigm. We demonstrate the technique with a simple example: the spin-1 XXZ model on the Kagome lattice. The mean field calculation predicts a number of phases and phase transitions, including a z=2 deconfined quantum critical point.Comment: 10 pages + appendix, 15 figure

    Production of q bar-q Pairs in Proton-Nucleus Collisions at High Energies

    Get PDF
    We calculate production of quark-antiquark pairs in high energy proton-nucleus collisions both in the quasi-classical approximation of McLerran-Venugopalan model and including quantum small-xx evolution. The resulting production cross section is explicitly expressed in terms of Glauber-Mueller multiple rescatterings in the classical case and in terms of dipole-nucleus scattering amplitude in the quantum evolution case. We generalize the result of one of us (K.T.) beyond the aligned jet configurations. We expand on the earlier results of Blaizot, Gelis and Venugopalan by deriving quark production cross section including quantum evolution corrections in rapidity intervals both between the quarks and the target and between the quarks and the projectile.Comment: 18 pages, 3 figures; typos corrected, discussion extende
    corecore