7,979 research outputs found

    Multiscale expansion and integrability properties of the lattice potential KdV equation

    Get PDF
    We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries of the lattice potential Korteweg-de Vries equation. From these calculations we show that, like the lowest order secularity conditions give a nonlinear Schroedinger equation, the Lax pair gives at the same order the Zakharov and Shabat spectral problem and the symmetries the hierarchy of point and generalized symmetries of the nonlinear Schroedinger equation.Comment: 10 pages, contribution to the proceedings of the NEEDS 2007 Conferenc

    Heun equation, Teukolsky equation, and type-D metrics

    Full text link
    Starting with the whole class of type-D vacuum backgrounds with cosmological constant we show that the separated Teukolsky equation for zero rest-mass fields with spin s=±2s=\pm 2 (gravitational waves), s=±1s=\pm 1 (electromagnetic waves) and s=±1/2s=\pm 1/2 (neutrinos) is an Heun equation in disguise.Comment: 27 pages, corrected typo in eq. (1

    Cylindrically symmetric, static strings with a cosmological constant in Brans-Dicke theory

    Get PDF
    The static, cylindrically symmetric vacuum solutions with a cosmological constant in the framework of the Brans-Dicke theory are investigated. Some of these solutions admitting Lorentz boost invariance along the symmetry axis correspond to local, straight cosmic strings with a cosmological constant. Some physical properties of such solutions are studied. These strings apply attractive or repulsive forces on the test particles. A smooth matching is also performed with a recently introduced interior thick string solution with a cosmological constant.Comment: 8 pages, Revtex; Published versio

    Multiscale reduction of discrete nonlinear Schroedinger equations

    Full text link
    We use a discrete multiscale analysis to study the asymptotic integrability of differential-difference equations. In particular, we show that multiscale perturbation techniques provide an analytic tool to derive necessary integrability conditions for two well-known discretizations of the nonlinear Schroedinger equation.Comment: 12 page

    Disks in Expanding FRW Universes

    Get PDF
    We construct exact solutions to Einstein equations which represent relativistic disks immersed into an expanding FRW Universe. It is shown that the expansion influences dynamical characteristics of the disks such as rotational curves, surface mass density, etc. The effects of the expansion is exemplified with non-static generalizations of Kuzmin-Curzon and generalized Schwarzschild disks.Comment: Revised version to appear in ApJ, Latex, 17 pages, 10 figures, uses aaspp4 and epsf style file

    Melvin universe as a limit of the C-metric

    Get PDF
    It is demonstrated that the Melvin universe representing the spacetime with a strong 'homogeneous' electric field can by obtained from the spacetime of two accelerated charged black holes by a suitable limiting procedure. The behavior of various invariantly defined geometrical quantities in this limit is also studied.Comment: 5 pages, no figures [v2: two references added

    Decrement Operators in Belief Change

    Full text link
    While research on iterated revision is predominant in the field of iterated belief change, the class of iterated contraction operators received more attention in recent years. In this article, we examine a non-prioritized generalisation of iterated contraction. In particular, the class of weak decrement operators is introduced, which are operators that by multiple steps achieve the same as a contraction. Inspired by Darwiche and Pearl's work on iterated revision the subclass of decrement operators is defined. For both, decrement and weak decrement operators, postulates are presented and for each of them a representation theorem in the framework of total preorders is given. Furthermore, we present two sub-types of decrement operators

    Counterterm Method in Lovelock Theory and Horizonless Solutions in Dimensionally Continued Gravity

    Full text link
    In this paper we, first, generalize the quasilocal definition of the stress energy tensor of Einstein gravity to the case of Lovelock gravity, by introducing the tensorial form of surface terms that make the action well-defined. We also introduce the boundary counterterm that removes the divergences of the action and the conserved quantities of the solutions of Lovelock gravity with flat boundary at constant tt and rr. Second, we obtain the metric of spacetimes generated by brane sources in dimensionally continued gravity through the use of Hamiltonian formalism, and show that these solutions have no curvature singularity and no horizons, but have conic singularity. We show that these asymptotically AdS spacetimes which contain two fundamental constants are complete. Finally we compute the conserved quantities of these solutions through the use of the counterterm method introduced in the first part of the paper.Comment: 15 pages, references added, typos correcte

    Continuous Symmetries of Difference Equations

    Full text link
    Lie group theory was originally created more than 100 years ago as a tool for solving ordinary and partial differential equations. In this article we review the results of a much more recent program: the use of Lie groups to study difference equations. We show that the mismatch between continuous symmetries and discrete equations can be resolved in at least two manners. One is to use generalized symmetries acting on solutions of difference equations, but leaving the lattice invariant. The other is to restrict to point symmetries, but to allow them to also transform the lattice.Comment: Review articl

    Magnetic Branes Supported by Nonlinear Electromagnetic Field

    Full text link
    Considering the nonlinear electromagnetic field coupled to Einstein gravity in the presence of cosmological constant, we obtain a new class of dd-dimensional magnetic brane solutions. This class of solutions yields a spacetime with a longitudinal nonlinear magnetic field generated by a static source. These solutions have no curvature singularity and no horizons but have a conic geometry with a deficit angle ÎŽÏ•\delta \phi. We investigate the effects of nonlinearity on the metric function and deficit angle and also find that for the special range of the nonlinear parameter, the solutions are not asymptotic AdS. We generalize this class of solutions to the case of spinning magnetic solutions, and find that when one or more rotation parameters are nonzero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameters. Then, we use the counterterm method and compute the conserved quantities of these spacetimes. Finally, we obtain a constrain on the nonlinear parameter, such that the nonlinear electromagnetic field is conformally invariant.Comment: 15 pages, one eps figur
    • 

    corecore