14,450 research outputs found

    Generalized Erdos Numbers for network analysis

    Get PDF
    In this paper we consider the concept of `closeness' between nodes in a weighted network that can be defined topologically even in the absence of a metric. The Generalized Erd\H{o}s Numbers (GENs) satisfy a number of desirable properties as a measure of topological closeness when nodes share a finite resource between nodes as they are real-valued and non-local, and can be used to create an asymmetric matrix of connectivities. We show that they can be used to define a personalized measure of the importance of nodes in a network with a natural interpretation that leads to a new global measure of centrality and is highly correlated with Page Rank. The relative asymmetry of the GENs (due to their non-metric definition) is linked also to the asymmetry in the mean first passage time between nodes in a random walk, and we use a linearized form of the GENs to develop a continuum model for `closeness' in spatial networks. As an example of their practicality, we deploy them to characterize the structure of static networks and show how it relates to dynamics on networks in such situations as the spread of an epidemic

    Tractrices, Bicycle Tire Tracks, Hatchet Planimeters, and a 100-year-old Conjecture

    Full text link
    Geometry of the tracks left by a bicycle is closely related with the so-called Prytz planimeter and with linear fractional transformations of the complex plane. We describe these relations, along with the history of the problem, and give a proof of a conjecture made by Menzin in 1906.Comment: 20 pages, 18 figure

    Symmetries of differential-difference dynamical systems in a two-dimensional lattice

    Full text link
    Classification of differential-difference equation of the form u¨nm=Fnm(t,{upq}(p,q)Γ)\ddot{u}_{nm}=F_{nm}\big(t, \{u_{pq}\}|_{(p,q)\in \Gamma}\big) are considered according to their Lie point symmetry groups. The set Γ\Gamma represents the point (n,m)(n,m) and its six nearest neighbors in a two-dimensional triangular lattice. It is shown that the symmetry group can be at most 12-dimensional for abelian symmetry algebras and 13-dimensional for nonsolvable symmetry algebras.Comment: 24 pages, 1 figur

    Oscillations and stability of numerical solutions of the heat conduction equation

    Get PDF
    The mathematical model and results of numerical solutions are given for the one dimensional problem when the linear equations are written in a rectangular coordinate system. All the computations are easily realizable for two and three dimensional problems when the equations are written in any coordinate system. Explicit and implicit schemes are shown in tabular form for stability and oscillations criteria; the initial temperature distribution is considered uniform

    Bayesian inference of a negative quantity from positive measurement results

    Full text link
    In this paper the Bayesian analysis is applied to assign a probability density to the value of a quantity having a definite sign. This analysis is logically consistent with the results, positive or negative, of repeated measurements. Results are used to estimate the atom density shift in a caesium fountain clock. The comparison with the classical statistical analysis is also reported and the advantages of the Bayesian approach for the realization of the time unit are discussed.Comment: 10 pages, 4 figures, submitted to Metrologi

    Lie discrete symmetries of lattice equations

    Full text link
    We extend two of the methods previously introduced to find discrete symmetries of differential equations to the case of difference and differential-difference equations. As an example of the application of the methods, we construct the discrete symmetries of the discrete Painlev\'e I equation and of the Toda lattice equation
    corecore