11 research outputs found
Autologous apoptotic cells preceding transplantation enhance survival in lethal murine graft-versus-host models
Acute graft-versus-host disease (GVHD) is induced by alloreactivity of donor T cells toward host antigens presented on antigen-presenting cells (APCs). Apoptotic cells are capable of inducing tolerance by altering APC maturation. Apoptosis can be induced by extracorporeal photopheresis (ECP). We demonstrate that the use of ECP as a prophylaxis prior to conditioning significantly improves survival (P < .0001) after bone marrow transplantation (BMT) by inhibiting the initiation phase of acute GVHD in a murine BMT model. ECP-treated autologous splenocytes resulted in immune tolerance in the host, including reduced dendritic cell activation with decreased nuclear factor-ÎşB engagement, increased regulatory T-cell (Treg) numbers with enhanced expression of cytolytic T lymphocyte-associated antigen 4, potentiating their suppressive function. The protective effect required host production of interleukin-10 and host Tregs. Conventional T cells that entered this tolerant environment experienced reduced proliferation, as well as a reduction of tissue homing and expression of activation markers. The induction of this tolerant state by ECP was obviated by cotreatment with lipopolysaccharide, suggesting that the inflammatory state of the recipient prior to treatment would play a role in potential clinical translation. The use of prophylactic ECP may provide an alternative and safe method for immunosuppression in the bone marrow transplant setting
Normal Formation of a Subset of Intestinal Granules in Caenorhabditis elegans Requires ATP-binding Cassette Transporters HAF-4 and HAF-9, Which Are Highly Homologous to Human Lysosomal Peptide Transporter TAP-Like
TAP-like (TAPL; ABCB9) is a half-type ATP-binding cassette (ABC) transporter that localizes in lysosome and putatively conveys peptides from cytosol to lysosome. However, the physiological role of this transporter remains to be elucidated. Comparison of genome databases reveals that TAPL is conserved in various species from a simple model organism, Caenorhabditis elegans, to mammals. C. elegans possesses homologous TAPL genes: haf-4 and haf-9. In this study, we examined the tissue-specific expression of these two genes and analyzed the phenotypes of the loss-of-function mutants for haf-4 and haf-9 to elucidate the in vivo function of these genes. Both HAF-4 and HAF-9 tagged with green fluorescent protein (GFP) were mainly localized on the membrane of nonacidic but lysosome-associated membrane protein homologue (LMP-1)-positive intestinal granules from larval to adult stage. The mutants for haf-4 and haf-9 exhibited granular defects in late larval and young adult intestinal cells, associated with decreased brood size, prolonged defecation cycle, and slow growth. The intestinal granular phenotype was rescued by the overexpression of the GFP-tagged wild-type protein, but not by the ATP-unbound form of HAF-4. These results demonstrate that two ABC transporters, HAF-4 and HAF-9, are related to intestinal granular formation and some other physiological aspects
Mast cells participate in allograft rejection: can IL-37 play an inhibitory role?
Objective: The aim of this study was to evaluate the role of mast cells (MCs) in allograft rejection, eventually inhibited by IL-37. Immune cells including MCs participate in allograft rejection by generating IL-1, IL-33, TNF and other cytokines. Methods: We evaluated allograft rejection on the experience of our experimental data and using the relevant literature. Results: MCs are involved in initiation and regulation of innate and adaptive immune responses-pathways. MCs are important pro-inflammatory cells which express high-affinity receptor FceRI and can be activated by IgE and some pro-inflammatory cytokines, such as IL-1 and IL-33. The cross-linkage of high affinity IgE receptor on MCs by antigen ligation has a crucial role in allergy, asthma, anaphylaxis, cancer and allograft rejection. MCs mediate immunity in organ transplant, leading to the activation of allospecific T cells implicated in the rejection and generate pro-inflammatory cytokines/chemokines. IL-1 pro-inflammatory cytokine family members released by MCs mediate allograft rejection and inflammation. IL-37 is also an IL-1 family member generated by macrophage cell line in small amounts, which binds to IL-18R\u3b1 and produces an anti-inflammatory effect. IL-37 provokes the inhibition of TLR signaling, TLR-induced mTOR and (MyD88)-mediated responses, suppressing pro-inflammatory IL-1 family members and increasing IL-10. Conclusion: IL-37 inhibition offers the opportunity to immunologically modulate MCs, by suppressing their production of IL-1 family members and reducing the risk of allograft rejection, resulting as a potential good therapeutic new cytokine. Here, we report the relationship between inflammatory MCs, allograft rejection and pro-inflammatory and anti-inflammatory IL-37
Regulatory immune cells in transplantation
Immune regulation is fundamental to any immune response to ensure that it is appropriate for the perceived threat to the host. Following cell and organ transplantation, it is essential to control both the innate immune response triggered by the injured tissue and the adaptive immune response stimulated by mismatched donor and recipient histocompatibility antigens to enable the transplant to survive and function. Here, we discuss the leukocyte populations that can promote immune tolerance after cell or solid-organ transplantation. Such populations include regulatory T cells, B cells and macrophages, as well as myeloid-derived suppressor cells, dendritic cells and mesenchymal stromal cells. We consider the potential of these regulatory immune cells to develop and function in transplant recipients and their potential use as cellular therapies to promote long-term graft function