15 research outputs found

    The role of cysteine 230 and lysine 238 of biotin carboxylase in the deprotonation of biotin and synthesis of bisubstrate analogy inhibitor of carboxyltransferase

    Get PDF
    Acetyl-CoA carboxylase catalyzes the first step in the synthesis of fatty acids. The Escherichia coli form of the enzyme consists of a biotin carboxylase protein, a biotin carboxyl carrier protein, and a carboxyltransferase protein. This enzyme uses the cofactor biotin as a carboxyl carrier. In order for the carboxylation of biotin to occur, biotin must be deprotonated at its N-1 position. It has been proposed that the active site residues cysteine 230 and lysine 238 act as an acid-base pair to deprotonate biotin. To test this hypothesis, site-directed mutagenesis was used to mutate cysteine 230 to alanine (C230A) and lysine 238 to glutamine (K238Q). Mutations at either residue resulted in a 50-fold increase in the Km for ATP. The C230A mutation had no effect on the formation of carboxybiotin, indicating that cysteine 230 does not play a role in the deprotonation of biotin. However, the K238Q mutation resulted in no formation of carboxybiotin, which showed that lysine 238 has a role in the carboxylation reaction. However, the pK value for lysine 238 was 9.4 or higher, suggesting lysine 238 is not a catalytic base. Thus, the results suggest that cysteine 230 and lysine 238 do not act as an acid-base pair in the deprotonation of biotin. A bisubstrate analog inhibitor of carboxyltransferase was synthesized by covalently linking biotin to Coenzyme A via an acyl bridge between the sulfur of Coenzyme A and the N-1 of biotin. The inhibitor was found to have an inhibition constant of 23 ± 2 ìM, which means it binds the enzyme 350-times tighter than biotin. The bisubstrate analog demonstrated competitive inhibition versus malonyl-CoA and noncompetitive inhibition versus biocytin. This is consistent with an ordered kinetic mechanism with malonyl-CoA binding first. A precursor to the inhibitor, chloroacylated biotin, was capable of inhibiting the differentiation of 3T3-L1 cells in a dose-dependent manner. Treatment with chloroacylated biotin resulted in a decrease in acetyl-CoA carboxylase activity and inhibited lipid accumulation. Our results support recent studies that indicate acetyl-CoA carboxylase may be a suitable target as an anti-obesity therapeutic

    Exploratory study of the effect of one week of orally administered CNSA-001 (sepiapterin) on CNS levels of tetrahydrobiopterin, dihydrobiopterin and monoamine neurotransmitter metabolites in healthy volunteers

    Full text link
    Tetrahydrobiopterin (BH4) is a cofactor for the enzymes tyrosine hydroxylase and tryptophan hydroxylase, the rate-limiting enzymes in the production of the neurotransmitters, dopamine and serotonin, respectively, in the central nervous system (CNS). Administration of BH4 is used clinically within the management of persons with genetic BH4 deficiencies, but the BH4 molecule does not cross the blood-brain barrier sufficiently. CNSA-001 is a pharmaceutical preparation of sepiapterin, a natural precursor of BH4 that induced larger increases in plasma BH4 compared with administration of the same doses of BH4 itself in healthy volunteers in a randomized trial. Here, we report the effects of 7days of once-daily treatment with CNSA-001 60mg/kg (n=6) or placebo (n=2) on metabolites of the BH4 synthetic pathway and on biomarkers of the serotonin (5-hydroxyindoleacetic acid [5-HIAA]) and dopamine (homovanillic acid [HVA]) pathways in cerebrospinal fluid (CSF) in subjects from this trial. There were no notable changes in any metabolite in placebo-treated subjects. Administration of CNSA-001 increased mean BH4 from 18.1 (SD 3.0) to 35.1 (10.0) nmol/L, and of dihydrobiopterin (BH2) from 2.1 (0.3) to 7.9 (1.5) nmol/L. Overall, administration of CNSA-001 had little effect on mean levels (pre- vs. post-treatment) of 5-HIAA (76.1 [SD 29.8] vs. 70.1 [23.1] nmol/L) or HVA (177.2 [66.5] vs. 184.8 [35.3]) nmol/L. One subject with low 5-HIAA and HVA at baseline responded with approximately three-fold increases in CNS levels of these metabolites after CNSA-001 treatment, with post-treatment levels within the range of those seen in other subjects. Administration of CNSA-001 60mg/kg markedly increased levels of BH4 in the CNS of healthy volunteers, with apparently little overall effect in CNS levels of already normal key neurotransmitter metabolites

    A bisubstrate analog inhibitor of the carboxyltransferase component of acetyl-CoA carboxylase

    No full text
    Acetyl-CoA carboxylase catalyzes the first committed step in the synthesis of long-chain fatty acids. The Escherichia coli form of the enzyme consists of a biotin carboxylase protein, a biotin carboxyl carrier protein, and a carboxyltransferase protein. In this report, the synthesis of a bisubstrate analog inhibitor of carboxyltransferase is described. The inhibitor was synthesized by covalently linking biotin to coenzyme A via an acyl bridge between the sulfur of coenzyme A and the 1\u27-N of biotin. The steady-state kinetics of carboxyltransferase are characterized in the reverse direction, in which malonyl-CoA reacts with biocytin to form acetyl-CoA and carboxybiocytin. The inhibitor exhibited competitive inhibition versus malonyl-CoA and noncompetitive inhibition versus biocytin, with a slope inhibition constant (K(is)) of 23 +/- 2 microM. The bisubstrate analog has an affinity for carboxyltransferase 350 times higher than biotin. This suggests the inhibitor will be useful in structural studies, as well as aid in the search for chemotherapeutic agents that target acetyl-CoA carboxylase

    Phase I clinical evaluation of CNSA-001 (sepiapterin), a novel pharmacological treatment for phenylketonuria and tetrahydrobiopterin deficiencies, in healthy volunteers

    Full text link
    Tetrahydrobiopterin (BH4) is the natural cofactor of aromatic amino acid hydroxylases and essential for degradation of phenylalanine and synthesis of catecholamines and serotonin. It can be synthesized either de novo from GTP or through the salvage pathway from sepiapterin. Sepiapterin, a natural precursor of BH4, is a more stable molecule and is transported more efficiently across cellular membranes, thus having potentially significant advantage over BH4 as a pharmacological agent for diseases associated with BH4-deficient conditions. We report the results of a first-in-humans, randomized, double-blind, placebo-controlled, dose-ranging, Phase I clinical trial in 83 healthy volunteers of CNSA-001, a novel formulation of sepiapterin. Single oral doses of 2.5-80mg/kg CNSA-001 caused dose-related increases in plasma sepiapterin (mean Cmax 0.58-2.92ng/mL) and BH4 (mean Cmax 57-312ng/mL). Maximum plasma concentrations were achieved in about 1-2h (sepiapterin) or about 4h (BH4) after CNSA-001 oral intake. Increases in plasma BH4 were substantially larger in absolute terms and on a dose-for-dose basis following treatment with CNSA-001 vs. sapropterin dihydrochloride, a synthetic form of BH4. The pharmacokinetics of plasma sepiapterin and BH4 were similar before and after seven days of repeat daily dosing with CNSA-001 at 5, 20 or 60mg/kg indicating little or no drug accumulation. Oral administration of CNSA-001 resulted in higher concentrations of sepiapterin in fasted vs. fed subjects, but overall BH4 plasma exposure following CNSA-001 intake increased by 1.7-1.8-fold in fed subjects. CNSA-001 was well tolerated, with no clear dose-relationship for adverse events (AE), no serious AE and no study discontinuations for AE. These data indicate that CNSA-001 is rapidly and efficiently converted to BH4 in humans supporting further clinical evaluation of CNSA-001 for the management of PKU, primary BH4 deficiencies and other diseases associated with deficient BH4 metabolism

    A biotin analog inhibits acetyl-CoA carboxylase activity and adipogenesis

    No full text
    Acetyl-CoA carboxylase catalyzes the first committed step in the synthesis of long chain fatty acids. In this study, we observed that treatment of 3T3-L1 cells with biotin chloroacetylated at the 1\u27 nitrogen reduced the enzymatic activity of cytosolic acetyl-CoA carboxylase and concomitantly inhibited the differentiation of 3T3-L1 cells in a dose-dependent manner. Treatment with chloroacetylated biotin blocked the induction of PPARgamma, STAT1, and STAT5A expression that normally occurs with adipogenesis. Moreover, addition of chloroacetylated biotin inhibited lipid accumulation, as judged by Oil Red O staining. Our results support recent studies that indicate that acetyl-CoA carboxylase may be a suitable target for an anti-obesity therapeutic

    Development of a Luminex Bead Based Assay for Diagnosis of Toxocariasis Using Recombinant Antigens Tc-CTL-1 and Tc-TES-26.

    No full text
    The clinical spectrum of human disease caused by the roundworms Toxocara canis and Toxocara cati ranges from visceral and ocular larva migrans to covert toxocariasis. The parasite is not typically recovered in affected tissues, so detection of parasite-specific antibodies is usually necessary for establishing a diagnosis. The most reliable immunodiagnostic methods use the Toxocara excretory-secretory antigens (TES-Ag) in ELISA formats to detect Toxocara-specific antibodies. To eliminate the need for native parasite materials, we identified and purified immunodiagnostic antigens using 2D gel electrophoresis followed by electrospray ionization mass spectrometry. Three predominant immunoreactive proteins were found in the TES; all three had been previously described in the literature: Tc-CTL-1, Tc-TES-26, and Tc-MUC-3. We generated Escherichia coli expressed recombinant proteins for evaluation in Luminex based immunoassays. We were unable to produce a functional assay with the Tc-MUC-3 recombinant protein. Tc-CTL-1 and Tc-TES-26 were successfully coupled and tested using defined serum batteries. The use of both proteins together generated better results than if the proteins were used individually. The sensitivity and specificity of the assay for detecting visceral larval migrans using Tc-CTL-1 plus Tc-TES-26 was 99% and 94%, respectively; the sensitivity for detecting ocular larval migrans was 64%. The combined performance of the new assay was superior to the currently available EIA and could potentially be employed to replace current assays that rely on native TES-Ag
    corecore