2,704 research outputs found
Critical Collapse of an Ultrarelativistic Fluid in the Limit
In this paper we investigate the critical collapse of an ultrarelativistic
perfect fluid with the equation of state in the limit of
. We calculate the limiting continuously self similar (CSS)
solution and the limiting scaling exponent by exploiting self-similarity of the
solution. We also solve the complete set of equations governing the
gravitational collapse numerically for and
compare them with the CSS solutions. We also investigate the supercritical
regime and discuss the hypothesis of naked singularity formation in a generic
gravitational collapse. The numerical calculations make use of advanced methods
such as high resolution shock capturing evolution scheme for the matter
evolution, adaptive mesh refinement, and quadruple precision arithmetic. The
treatment of vacuum is also non standard. We were able to tune the critical
parameter up to 30 significant digits and to calculate the scaling exponents
accurately. The numerical results agree very well with those calculated using
the CSS ansatz. The analysis of the collapse in the supercritical regime
supports the hypothesis of the existence of naked singularities formed during a
generic gravitational collapse.Comment: 23 pages, 16 figures, revised version, added new results of
investigation of a supercritical collapse and the existence of naked
singularities in generic gravitational collaps
Numerical Simulation of the Hydrodynamical Combustion to Strange Quark Matter
We present results from a numerical solution to the burning of neutron matter
inside a cold neutron star into stable (u,d,s) quark matter. Our method solves
hydrodynamical flow equations in 1D with neutrino emission from weak
equilibrating reactions, and strange quark diffusion across the burning front.
We also include entropy change due to heat released in forming the stable quark
phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04
times the speed of light, much faster than previous estimates derived using
only a reactive-diffusive description. Analytic solutions to hydrodynamical
jump conditions with a temperature dependent equation of state agree very well
with our numerical findings for fluid velocities. The most important effect of
neutrino cooling is that the conversion front stalls at lower density (below
approximately 2 times saturation density). In a 2-dimensional setting, such
rapid speeds and neutrino cooling may allow for a flame wrinkle instability to
develop, possibly leading to detonation.Comment: 5 pages, 3 figures (animations online at
http://www.capca.ucalgary.ca/~bniebergal/webPHP/research.php
Raman signatures of classical and quantum phases in coupled dots: A theoretical prediction
We study electron molecules in realistic vertically coupled quantum dots in a
strong magnetic field. Computing the energy spectrum, pair correlation
functions, and dynamical form factor as a function of inter-dot coupling via
diagonalization of the many-body Hamiltonian, we identify structural
transitions between different phases, some of which do not have a classical
counterpart. The calculated Raman cross section shows how such phases can be
experimentally singled out.Comment: 9 pages, 2 postscript figures, 1 colour postscript figure, Latex 2e,
Europhysics Letters style and epsfig macros. Submitted to Europhysics Letter
Consistent thermodynamic derivative estimates for tabular equations of state
Numerical simulations of compressible fluid flows require an equation of
state (EOS) to relate the thermodynamic variables of density, internal energy,
temperature, and pressure. A valid EOS must satisfy the thermodynamic
conditions of consistency (derivation from a free energy) and stability
(positive sound speed squared). When phase transitions are significant, the EOS
is complicated and can only be specified in a table. For tabular EOS's such as
SESAME from Los Alamos National Laboratory, the consistency and stability
conditions take the form of a differential equation relating the derivatives of
pressure and energy as functions of temperature and density, along with
positivity constraints. Typical software interfaces to such tables based on
polynomial or rational interpolants compute derivatives of pressure and energy
and may enforce the stability conditions, but do not enforce the consistency
condition and its derivatives. We describe a new type of table interface based
on a constrained local least squares regression technique. It is applied to
several SESAME EOS's showing how the consistency condition can be satisfied to
round-off while computing first and second derivatives with demonstrated
second-order convergence. An improvement of 14 orders of magnitude over
conventional derivatives is demonstrated, although the new method is apparently
two orders of magnitude slower, due to the fact that every evaluation requires
solving an 11-dimensional nonlinear system.Comment: 29 pages, 9 figures, 16 references, submitted to Phys Rev
Finite difference lattice Boltzmann model with flux limiters for liquid-vapor systems
In this paper we apply a finite difference lattice Boltzmann model to study
the phase separation in a two-dimensional liquid-vapor system. Spurious
numerical effects in macroscopic equations are discussed and an appropriate
numerical scheme involving flux limiter techniques is proposed to minimize them
and guarantee a better numerical stability at very low viscosity. The phase
separation kinetics is investigated and we find evidence of two different
growth regimes depending on the value of the fluid viscosity as well as on the
liquid-vapor ratio.Comment: 10 pages, 10 figures, to be published in Phys. Rev.
Hyperbolic slicings of spacetime: singularity avoidance and gauge shocks
I study the Bona-Masso family of hyperbolic slicing conditions, considering
in particular its properties when approaching two different types of
singularities: focusing singularities and gauge shocks. For focusing
singularities, I extend the original analysis of Bona et. al and show that both
marginal and strong singularity avoidance can be obtained for certain types of
behavior of the slicing condition as the lapse approaches zero. For the case of
gauge shocks, I re-derive a condition found previously that eliminates them.
Unfortunately, such a condition limits considerably the type of slicings
allowed. However, useful slicing conditions can still be found if one asks for
this condition to be satisfied only approximately. Such less restrictive
conditions include a particular member of the 1+log family, which in the past
has been found empirically to be extremely robust for both Brill wave and black
hole simulations.Comment: 11 pages, revtex4. Change in acknowledgment
High-Order Discontinuous Galerkin Method for Boltzmann Model Equations
High-order Runge-Kutta discontinuous Galerkin (DG) method is applied to the kinetic model equations describing rarefied gas flows. A conservative DG discretization of nonlinear collision relaxation term is formulated for Bhatnagar-Gross-Krook and ellipsoidal statistical models. The numerical solutions using RKDG method of order up to four are obtained for two flow problems: the heat transfer between parallel plates and the normal shock wave. The convergence of RKDG method is compared with the conventional secondorder finite volume method for the heat transfer problem. The normal shock wave solutions obtained using RKDG are compared with the experimental measurements of density and velocity distribution function inside the shock
- âŠ