I study the Bona-Masso family of hyperbolic slicing conditions, considering
in particular its properties when approaching two different types of
singularities: focusing singularities and gauge shocks. For focusing
singularities, I extend the original analysis of Bona et. al and show that both
marginal and strong singularity avoidance can be obtained for certain types of
behavior of the slicing condition as the lapse approaches zero. For the case of
gauge shocks, I re-derive a condition found previously that eliminates them.
Unfortunately, such a condition limits considerably the type of slicings
allowed. However, useful slicing conditions can still be found if one asks for
this condition to be satisfied only approximately. Such less restrictive
conditions include a particular member of the 1+log family, which in the past
has been found empirically to be extremely robust for both Brill wave and black
hole simulations.Comment: 11 pages, revtex4. Change in acknowledgment