2,450 research outputs found

    Shear-Improved Smagorinsky Model for Large-Eddy Simulation of Wall-Bounded Turbulent Flows

    Get PDF
    A shear-improved Smagorinsky model is introduced based on recent results concerning shear effects in wall-bounded turbulence by Toschi et al. (2000). The Smagorinsky eddy-viscosity is modified subtracting the magnitude of the mean shear from the magnitude of the instantaneous resolved strain-rate tensor. This subgrid-scale model is tested in large-eddy simulations of plane-channel flows at two different Reynolds numbers. First comparisons with the dynamic Smagorinsky model and direct numerical simulations, including mean velocity, turbulent kinetic energy and Reynolds stress profiles, are shown to be extremely satisfactory. The proposed model, in addition of being physically sound, has a low computational cost and possesses a high potentiality of generalization to more complex non-homogeneous turbulent flows.Comment: 10 pages, 6 figures, added some reference

    Can finite-frequency effects be accounted for in ray theory surface wave tomography?

    No full text
    International audience[ 1] We present a series of synthetic tests showing that regional surface wave tomographies with a dense path coverage of the target region can be safely conducted under ray theory because the shortcomings of ray theory in considering finite-frequency effects can be counterbalanced by a physically-based regularization of the inversion. In particular, we show that with ray theory applied under the above conditions, it is possible to detect heterogeneities with length scales smaller than the wavelength of the data set

    Policy measures targeting a more integrated gas market: Impact of a merger of two trading zones on prices and arbitrage activity in France

    Get PDF
    Under way to a European integrated energy market, policymakers need to find efficient measures aimed at increasing liquidity in local natural gas markets. The paper answers the question whether a merger of gas trading zones contributes to the development of liquid trading activities through a more efficient allocation and pricing of natural gas and an increased competition between market players. We analyse the effects of a policy decision to merge two gas trading zones in France on the observed degree of spatial market integration and the efficiency of the spatial arbitrage activity between the northern and southern French gas markets. An extended parity bounds model confirms a positive impact of the zone merger on the market's spatial equilibrium and indicates the causes of remaining market inefficiencies. The model offers a tool for the assessment of the efficiency of policy decisions in the context of policy initiatives to create an integrated and liquid natural gas market in Europe

    Existence and approximation of probability measure solutions to models of collective behaviors

    Full text link
    In this paper we consider first order differential models of collective behaviors of groups of agents based on the mass conservation equation. Models are formulated taking the spatial distribution of the agents as the main unknown, expressed in terms of a probability measure evolving in time. We develop an existence and approximation theory of the solutions to such models and we show that some recently proposed models of crowd and swarm dynamics fit our theoretic paradigm.Comment: 31 pages, 1 figur

    Accurate discretization of advection-diffusion equations

    Full text link
    We present an exact mathematical transformation which converts a wide class of advection-diffusion equations into a form allowing simple and direct spatial discretization in all dimensions, and thus the construction of accurate and more efficient numerical algorithms. These discretized forms can also be viewed as master equations which provides an alternative mesoscopic interpretation of advection-diffusion processes in terms of diffusion with spatially varying hopping rates

    Consistent thermodynamic derivative estimates for tabular equations of state

    Full text link
    Numerical simulations of compressible fluid flows require an equation of state (EOS) to relate the thermodynamic variables of density, internal energy, temperature, and pressure. A valid EOS must satisfy the thermodynamic conditions of consistency (derivation from a free energy) and stability (positive sound speed squared). When phase transitions are significant, the EOS is complicated and can only be specified in a table. For tabular EOS's such as SESAME from Los Alamos National Laboratory, the consistency and stability conditions take the form of a differential equation relating the derivatives of pressure and energy as functions of temperature and density, along with positivity constraints. Typical software interfaces to such tables based on polynomial or rational interpolants compute derivatives of pressure and energy and may enforce the stability conditions, but do not enforce the consistency condition and its derivatives. We describe a new type of table interface based on a constrained local least squares regression technique. It is applied to several SESAME EOS's showing how the consistency condition can be satisfied to round-off while computing first and second derivatives with demonstrated second-order convergence. An improvement of 14 orders of magnitude over conventional derivatives is demonstrated, although the new method is apparently two orders of magnitude slower, due to the fact that every evaluation requires solving an 11-dimensional nonlinear system.Comment: 29 pages, 9 figures, 16 references, submitted to Phys Rev

    Quantum turbulence at finite temperature: the two-fluids cascade

    Get PDF
    To model isotropic homogeneous quantum turbulence in superfluid helium, we have performed Direct Numerical Simulations (DNS) of two fluids (the normal fluid and the superfluid) coupled by mutual friction. We have found evidence of strong locking of superfluid and normal fluid along the turbulent cascade, from the large scale structures where only one fluid is forced down to the vorticity structures at small scales. We have determined the residual slip velocity between the two fluids, and, for each fluid, the relative balance of inertial, viscous and friction forces along the scales. Our calculations show that the classical relation between energy injection and dissipation scale is not valid in quantum turbulence, but we have been able to derive a temperature--dependent superfluid analogous relation. Finally, we discuss our DNS results in terms of the current understanding of quantum turbulence, including the value of the effective kinematic viscosity

    Dynamics of Three Agent Games

    Full text link
    We study the dynamics and resulting score distribution of three-agent games where after each competition a single agent wins and scores a point. A single competition is described by a triplet of numbers pp, tt and qq denoting the probabilities that the team with the highest, middle or lowest accumulated score wins. We study the full family of solutions in the regime, where the number of agents and competitions is large, which can be regarded as a hydrodynamic limit. Depending on the parameter values (p,q,t)(p,q,t), we find six qualitatively different asymptotic score distributions and we also provide a qualitative understanding of these results. We checked our analytical results against numerical simulations of the microscopic model and find these to be in excellent agreement. The three agent game can be regarded as a social model where a player can be favored or disfavored for advancement, based on his/her accumulated score. It is also possible to decide the outcome of a three agent game through a mini tournament of two-a gent competitions among the participating players and it turns out that the resulting possible score distributions are a subset of those obtained for the general three agent-games. We discuss how one can add a steady and democratic decline rate to the model and present a simple geometric construction that allows one to write down the corresponding score evolution equations for nn-agent games

    Analysis of Diffusion of Ras2 in Saccharomyces cerevisiae Using Fluorescence Recovery after Photobleaching

    Full text link
    Binding, lateral diffusion and exchange are fundamental dynamic processes involved in protein association with cellular membranes. In this study, we developed numerical simulations of lateral diffusion and exchange of fluorophores in membranes with arbitrary bleach geometry and exchange of the membrane localized fluorophore with the cytosol during Fluorescence Recovery after Photobleaching (FRAP) experiments. The model simulations were used to design FRAP experiments with varying bleach region sizes on plasma-membrane localized wild type GFP-Ras2 with a dual lipid anchor and mutant GFP-Ras2C318S with a single lipid anchor in live yeast cells to investigate diffusional mobility and the presence of any exchange processes operating in the time scale of our experiments. Model parameters estimated using data from FRAP experiments with a 1 micron x 1 micron bleach region-of-interest (ROI) and a 0.5 micron x 0.5 micron bleach ROI showed that GFP-Ras2, single or dual lipid modified, diffuses as single species with no evidence of exchange with a cytoplasmic pool. This is the first report of Ras2 mobility in yeast plasma membrane. The methods developed in this study are generally applicable for studying diffusion and exchange of membrane associated fluorophores using FRAP on commercial confocal laser scanning microscopes.Comment: Accepted for publication in Physical Biology (2010). 28 pages, 7 figures, 3 table

    Finite difference lattice Boltzmann model with flux limiters for liquid-vapor systems

    Full text link
    In this paper we apply a finite difference lattice Boltzmann model to study the phase separation in a two-dimensional liquid-vapor system. Spurious numerical effects in macroscopic equations are discussed and an appropriate numerical scheme involving flux limiter techniques is proposed to minimize them and guarantee a better numerical stability at very low viscosity. The phase separation kinetics is investigated and we find evidence of two different growth regimes depending on the value of the fluid viscosity as well as on the liquid-vapor ratio.Comment: 10 pages, 10 figures, to be published in Phys. Rev.
    • …
    corecore