5 research outputs found

    Simultaneous Detection of Hepatitis C Virus (HCV) Core Antigen and Anti-HCV Antibodies Improves the Early Detection of HCV Infection

    No full text
    To evaluate whether a new enzyme immunoassay developed for the simultaneous detection of hepatitis C virus (HCV) core antigen (Ag) and anti-HCV antibodies (anti-HCV Ab) (Monolisa HCV Ag/Ab ULTRA; Bio-Rad) could improve the early detection of HCV infection, we compared its sensitivity to that of anti-HCV, HCV core Ag, and HCV RNA assays. The populations studied included 12 blood donor samples positive for HCV RNA and HCV core Ag but negative for anti-HCV antibodies and 23 hemodialysis patients who developed anti-HCV Ab (seroconversion) during the follow-up. From these 23 individuals, 83 samples sequentially collected prior to seroconversion and 108 samples collected after seroconversion were tested. Six of 12 blood donations were positive by the HCV Ag/Ab assay. In the hemodialysis cohort, the 24 HCV RNA-negative samples were negative by the HCV Ag/Ab assay and 23 of the 59 HCV RNA-positive samples (39%) were positive. The HCV Ag/Ab assay detected HCV infection on average 21.6 days before the most sensitive antibody assay. The HCV Ag/Ab assay did not detect HCV infection as early as the HCV RNA assay (mean delay, 30.3 days) or HCV Ag assay (mean delays, 27.9, and 16.3 days by the HCV core Ag quantification assay and the HCV Ag blood screening assay, respectively). This new assay provides a notable improvement for the early detection of HCV infection during the so-called window period compared with anti-HCV Ab assays and could be a useful alternative to HCV RNA detection or HCV core Ag assays for diagnosis or blood screening when nucleic acid technologies or HCV core Ag detection are not implemented

    Identification of apolipoprotein C-III as a potential plasmatic biomarker associated with the resolution of hepatitis C virus infection

    No full text
    International audienceUnderstanding the virus-host interactions that lead to approximately 20% of patients with acute Hepatitis C Virus (HCV) infection to viral clearance is probably a key towards the development of more effective treatment and prevention strategies. Acute hepatitis C infection is usually asymptomatic and therefore rarely diagnosed. Nevertheless, HCV nucleic acid testing carried out on all blood donations detects donors who have resolved their HCV infection after seroconver-sion. Here we have used SELDI-TOF-MS technology to compare, at a proteomic level, plasma samples respectively from donors with HCV clearance, from donors with chronic HCV infection and from unexposed healthy donors (n = 15 per group). A candidate marker of about 9.4 kDa was detected as differentially expressed in the three groups. After purification we identified by nanoLC-Q-TOF-MS/MS this candidate marker as Apolipoprotein C-III (ApoC-III). The identification was confirmed by western blot analysis. Levels of ApoC-III were then determined in the 45 plasma samples by immunoturbidimetric assay. ApoC-III was found to be higher in donors who had resolved their HCV infection than in donors with chronic infection, results which were consistent with SELDI-TOF-MS data. ApoC-III is the first reported candidate biomarker in plasma associated with the spontaneous resolution of HCV infection

    Expertise of French Laboratories in Detection, Genotyping, and Quantification of Hepatitis C Virus RNA in Serum

    No full text
    Before initiating new large-scale therapeutic trials for hepatitis C virus (HCV)-infected patients, the French Health Authorities for HCV research decided to organize an evaluation of the expertise of laboratories that could be engaged to undertake molecular biology assays in such trials; 21 experienced laboratories participated in this national evaluation of laboratory expertise, which was performed in two successive rounds. The first round evaluated the laboratories for their abilities to detect HCV RNA in serum, determine genotypes, and quantify HCV RNA loads. The results observed by qualitative assays for HCV RNA detection were 100% sensitivity and 100% specificity for all laboratories. The genotyping results were 100% concordant for 9 laboratories and greater than 90% for 10 laboratories. By contrast, large coefficients of variation were observed for quantitative determination of HCV RNA loads, leading to a second round with standardized quantitative assays only. The dispersion of the results was larger by the AMPLICOR HCV Monitor assay than by the branched-DNA assay (mean coefficients of variation, 57.4 and 16.9%, respectively). In the majority of cases, discrepancies between the results of the two tests were found for samples with high viral loads. These results indicate the usefulness of validating, by controlling for expertise, both the reliabilities of laboratories involved in multicenter work and the standardized assays chosen for use in the evaluation of the biological impacts of new therapies
    corecore