7 research outputs found

    Cytotaxonomic and evolutionary considerations about karyotipic data of fishes from the Iguaçu River Basin in South of Brazil

    No full text
    The cytogenetic data available in the literature about the ichthyofauna of the Iguaçu River basin were analyzed in this review. The ichthyofauna was characterized by the high level of endemism and by the low diversity of species. Twenty-four of the eighty-one species were already karyotyped; six Characiformes, fourteen Siluriformes and four Perciformes. The chromosomal data showed the taxonomic and systematic complexity of the groups. Hypothesis related to the evolution of some Characiformes and Siluriformes groups from the Iguaçu River are proposed, as well as the utilization of karyotypic data for cytotaxonomy.<br>Nesta revisão são analisados os dados citogenéticos disponíveis na literatura relativos à ictiofauna da bacia do Rio Iguaçu, a qual é caracterizada pelo alto grau de endemismo e pela baixa diversidade de espécies. Das oitenta e uma espécies conhecidas, vinte e quatro jå foram cariotipadas sendo 6 Characiformes, 14 Siluriformes e 4 Perciformes. Os dados cromossÎmicos evidenciam a complexidade taxonÎmica e sistemåtica dos grupos. São propostas hipóteses relacionadas à evolução de alguns grupos de Characiformes e Siluriformes do Rio Iguaçu, assim como o aproveitamento de dados cariotípicos para a citotaxonomia

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore