2,920 research outputs found
Teleportation of Quantum States
Bennett et al. (PRL 70, 1859 (1993)) have shown how to transfer ("teleport")
an unknown spin quantum state by using prearranged correlated quantum systems
and transmission of classical information. I will show how their results can be
obtained in the framework of nonlocal measurements proposed by Aharonov and
Albert I will generalize the latter to the teleportation of a quantum state of
a system with continuous variables.Comment: 5 page
A Template for Implementing Fast Lock-free Trees Using HTM
Algorithms that use hardware transactional memory (HTM) must provide a
software-only fallback path to guarantee progress. The design of the fallback
path can have a profound impact on performance. If the fallback path is allowed
to run concurrently with hardware transactions, then hardware transactions must
be instrumented, adding significant overhead. Otherwise, hardware transactions
must wait for any processes on the fallback path, causing concurrency
bottlenecks, or move to the fallback path. We introduce an approach that
combines the best of both worlds. The key idea is to use three execution paths:
an HTM fast path, an HTM middle path, and a software fallback path, such that
the middle path can run concurrently with each of the other two. The fast path
and fallback path do not run concurrently, so the fast path incurs no
instrumentation overhead. Furthermore, fast path transactions can move to the
middle path instead of waiting or moving to the software path. We demonstrate
our approach by producing an accelerated version of the tree update template of
Brown et al., which can be used to implement fast lock-free data structures
based on down-trees. We used the accelerated template to implement two
lock-free trees: a binary search tree (BST), and an (a,b)-tree (a
generalization of a B-tree). Experiments show that, with 72 concurrent
processes, our accelerated (a,b)-tree performs between 4.0x and 4.2x as many
operations per second as an implementation obtained using the original tree
update template
Measurements, errors, and negative kinetic energy
An analysis of errors in measurement yields new insight into the penetration
of quantum particles into classically forbidden regions. In addition to
``physical" values, realistic measurements yield ``unphysical" values which, we
show, can form a consistent pattern. An experiment to isolate a particle in a
classically forbidden region obtains negative values for its kinetic energy.
These values realize the concept of a {\it weak value}, discussed in previous
works.Comment: 22 pp, TAUP 1850-9
Absence of slow particle transport in the many-body localized phase
We analyze the saturation value of the bipartite entanglement and number entropy starting from a random product state deep in the many-body localized (MBL) phase. By studying the probability distributions of these entropies we find that the growth of the saturation value of the entanglement entropy stems from a significant reshuffling of the weight in the probability distributions from the bulk to the exponential tails. In contrast, the probability distributions of the saturation value of the number entropy are converged with system size, and exhibit a sharp cutoff for values of the number entropy which correspond to one particle fluctuating across the boundary between the two halves of the system. Our results therefore rule out slow particle transport deep in the MBL phase and confirm that the slow entanglement entropy production stems uniquely from configurational entanglement
Lorentz-Invariant "Elements of Reality" and the Question of Joint Measurability of Commuting Observables
It is shown that the joint measurements of some physical variables
corresponding to commuting operators performed on pre- and post-selected
quantum systems invariably disturb each other. The significance of this result
for recent proofs of the impossibility of realistic Lorentz invariant
interpretation of quantum theory (without assumption of locality) is discussed.Comment: 15 page
Thermal collapse of a granular gas under gravity
Free cooling of a gas of inelastically colliding hard spheres represents a
central paradigm of kinetic theory of granular gases. At zero gravity the
temperature of a freely cooling homogeneous granular gas follows a power law in
time. How does gravity, which brings inhomogeneity, affect the cooling? We
combine molecular dynamics simulations, a numerical solution of hydrodynamic
equations and an analytic theory to show that a granular gas cooling under
gravity undergoes thermal collapse: it cools down to zero temperature and
condenses on the bottom of the container in a finite time.Comment: 4 pages, 12 eps figures, to appear in PR
Transport in Stark many-body localized systems
Using numerically exact methods we study transport in an interacting spin chain which for sufficiently strong spatially constant electric field is expected to experience Stark many-body localization. We show that starting from a generic initial state, a spin excitation remains localized only up to a finite delocalization time, which depends exponentially on the size of the system and the strength of the electric field. This suggests that bona fide Stark many-body localization occurs only in the thermodynamic limit. We also demonstrate that the transient localization in a finite system and for electric fields stronger than the interaction strength can be well approximated by a Magnus expansion up to times which grow with the electric field strength
Autobiography, Biography, and Narrative Ethics
Background: Duplicated genes can indefinately persist in genomes if either both copies retain the original function due to dosage benefit (gene conservation), or one of the copies assumes a novel function (neofunctionalization), or both copies become required to perform the function previously accomplished by a single copy (subfunctionalization), or through a combination of these mechanisms. Different models of duplication retention imply different predictions about substitution rates in the coding portion of paralogs and about asymmetry of these rates. Results: We analyse sequence evolution asymmetry in paralogs present in 12 Drosophila genomes using the nearest non-duplicated orthologous outgroup as a reference. Those paralogs present in D. melanogaster are analysed in conjunction with the asymmetry of expression rate and ubiquity and of segregating non-synonymous polymorphisms in the same paralogs. Paralogs accumulate substitutions, on average, faster than their nearest singleton orthologs. The distribution of paralogs\u27 substitution rate asymmetry is overdispersed relative to that of orthologous clades, containing disproportionally more unusually symmetric and unusually asymmetric clades. We show that paralogs are more asymmetric in: a) clades orthologous to highly constrained singleton genes; b) genes with high expression level; c) genes with ubiquitous expression and d) non-tandem duplications. We further demonstrate that, in each asymmetrically evolving pair of paralogs, the faster evolving member of the pair tends to have lower average expression rate, lower expression uniformity and higher frequency of non-synonymous SNPs than its slower evolving counterpart. Conclusions: Our findings are consistent with the hypothesis that many duplications in Drosophila are retained despite stabilising selection being more relaxed in one of the paralogs than in the other, suggesting a widespread unfinished pseudogenization. This phenomenon is likely to make detection of neo- and subfunctionalization signatures difficult, as these models of duplication retention also predict asymmetries in substitution rates and expression profiles. Reviewers: This article has been reviewed by Dr. Jia Zeng (nominated by Dr. I. King Jordan), Dr. Fyodor Kondrashov and Dr. Yuri Wolf
- …