27 research outputs found

    Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma

    Get PDF
    Multiple myeloma, a plasma cell malignancy, is the second most common blood cancer. Despite extensive research, disease heterogeneity is poorly characterized, hampering efforts for early diagnosis and improved treatments. Here, we apply single cell RNA sequencing to study the heterogeneity of 40 individuals along the multiple myeloma progression spectrum, including 11 healthy controls, demonstrating high interindividual variability that can be explained by expression of known multiple myeloma drivers and additional putative factors. We identify extensive subclonal structures for 10 of 29 individuals with multiple myeloma. In asymptomatic individuals with early disease and in those with minimal residual disease post-treatment, we detect rare tumor plasma cells with molecular characteristics similar to those of active myeloma, with possible implications for personalized therapies. Single cell analysis of rare circulating tumor cells allows for accurate liquid biopsy and detection of malignant plasma cells, which reflect bone marrow disease. Our work establishes single cell RNA sequencing for dissecting blood malignancies and devising detailed molecular characterization of tumor cells in symptomatic and asymptomatic patients

    A randomized, open-label, multicentre, phase 2/3 study to evaluate the safety and efficacy of lumiliximab in combination with fludarabine, cyclophosphamide and rituximab versus fludarabine, cyclophosphamide and rituximab alone in subjects with relapsed chronic lymphocytic leukaemia

    Get PDF

    Safety and Efficacy of Ibrutinib in a Patient with Severe Renal Impairment

    No full text
    Ibrutinib (Imbruvica) is a first-in-class oral inhibitor of Bruton’s tyrosine kinase (BTK), an essential enzyme in B-cell receptor signaling pathway [...

    Cell-free IgG-aggregates in plasma of patients with chronic lymphocytic leukemia cause chronic activation of the classical complement pathway.

    No full text
    Therapy regimens for Chronic lymphocytic leukemia (CLL) commonly include chemotherapy and immunotherapy, which act through complement-mediated-cytotoxicity (CDC) and other mechanisms. CDC depends on several factors, including the availability and activity of the complement classical pathway (CP). Recently, a significant decrease in CP activity was shown to be associated with an immunoglobulin-C5a complex (Ig-C5a) and other markers of chronic CP activation in 40% of the patients. The study focused on the involvement of IgG-hexamers, an established CP activator, in the mechanism of chronic CP activation in CLL. Sera from 51 naïve CLL patients and 20 normal controls were collected. CP and alternative pathway (AP) activities were followed by the complement activity marker sC5b-9. Serum high molecular weight (HMW) proteins were collected by gel-filtration chromatography and their complement activation capacity was assessed. The levels of IgM, another established CP activator, were measured. Data were associated with the presence of Ig-C5a. Baseline levels of activation markers negatively correlated with CP and the AP activities, supporting chronic complement activation. In patients with Ig-C5a, HMW proteins that are not IgM, activated the complement. HMW proteins were identified as IgG-aggregates by affinity binding assays and Western blot analysis. The data indicate chronic CP activation, mediated by cell-free IgG-hexamers as a cause of decreased CP activity in part of the CLL population. This mechanism may affect immunotherapy outcomes due to compromised CP activity and CDC
    corecore