41 research outputs found

    New findings to discussion on local versus fluctuating stocks of pink salmon <i>Oncorhynchus gorbuscha</i>

    Get PDF
    Some patterns in dynamics of catch and biological parameters of pink salmon Oncorhynchus gorbuscha returned to the southeastern coast of Sakhalin Island and the Aniva Bay in 2014 (additional peak in the return abundance and unusual increase in relative fecundity of females in the second half of the return) could be interpreted as presence of the fish from Kuril Islands. This hypothesis was proven by the scale structure analysis, using the known difference between the pink salmon from southern Sakhalin and Iturup Island by the total number of sclerites and the depth of the local minimum in the first eight intersclerite distances caused by different environments. The fish of Kuril origin was found in all samples collected on the southeastern coast of Sakhalin on August 6, 7, 14, and 18, with its portion increasing in later catches, and in the sample collected in the Ostrovka River on the eastern shore of the Aniva Bay on August 18, but wasn’t found in the sample collected in the same site on August 25, and only a small portion of the fish of Kuril origin was found in the marine sample taken at the Busse Lagoon. The pink salmon in the Kura River on the western shore of the Aniva Bay had mixed origin, too, but without signs of the Kuril origin. This is the first real evidence of the salmon straying and the hypothesis of fluctuating stocks of pink salmon obtained with the ichthyological methods, though possibility of the straying is debating many years. This phenomenon has high theoretical and practical importance. The new findings show that mass movement of pink salmon between different reproduction regions is quite real, though maybe it happens rarely, presumably during the shift of domination between the odd- and even-year broodlines. The straying of low intensity may be invisible with routine methods, that’s why thorough monitoring of pink salmon stocks in different areas of its reproduction is necessary for understanding its population structure and dynamics, including detailed environmental, ichthyological and genetic studies

    Y-chromosome lineages from Portugal, Madeira and Açores record rlements of sephardim and berber ancestry

    Get PDF
    A total of 553 Y-chromosomes were analyzed from mainland Portugal and the North Atlantic Archipelagos of Ac¾ores and Madeira, in order to characterize the genetic composition of their male gene pool. A large majority (78–83% of each population) of the male lineages could be classified as belonging to three basic Y chromosomal haplogroups, R1b, J, and E3b. While R1b, accounting for more than half of the lineages in any of the Portuguese subpopulations, is a characteristic marker of many different West European populations, haplogroups J and E3b consist of lineages that are typical of the circum-Mediterranean region or even East Africa. The highly diverse haplogroup E3b in Portuguese likely combines sub-clades of distinct origins. The present composition of the Y chromosomes in Portugal in this haplogroup likely reflects a pre-Arab component shared with North African populations or testifies, at least in part, to the influence of Sephardic Jews. In contrast to the marginally low sub-Saharan African Y chromosome component in Portuguese, such lineages have been detected at a moderately high frequency in our previous survey of mtDNA from the same samples, indicating the presence of sex-related gene flow, most likely mediated by the Atlantic slave trade.info:eu-repo/semantics/publishedVersio

    Decreased Rate of Evolution in Y Chromosome STR Loci of Increased Size of the Repeat Unit

    Get PDF
    Polymorphic Y chromosome short tandem repeats (STRs) have been widely used in population genetic and evolutionary studies. Compared to di-, tri-, and tetranucleotide repeats, STRs with longer repeat units occur more rarely and are far less commonly used.In order to study the evolutionary dynamics of STRs according to repeat unit size, we analysed variation at 24 Y chromosome repeat loci: 1 tri-, 14 tetra-, 7 penta-, and 2 hexanucleotide loci. According to our results, penta- and hexanucleotide repeats have approximately two times lower repeat variance and diversity than tri- and tetranucleotide repeats, indicating that their mutation rate is about half of that of tri- and tetranucleotide repeats. Thus, STR markers with longer repeat units are more robust in distinguishing Y chromosome haplogroups and, in some cases, phylogenetic splits within established haplogroups.Our findings suggest that Y chromosome STRs of increased repeat unit size have a lower rate of evolution, which has significant relevance in population genetic and evolutionary studies

    Extended Y chromosome haplotypes resolve multiple and unique lineages of the Jewish priesthood

    Get PDF
    It has been known for over a decade that a majority of men who self report as members of the Jewish priesthood (Cohanim) carry a characteristic Y chromosome haplotype termed the Cohen Modal Haplotype (CMH). The CMH has since been used to trace putative Jewish ancestral origins of various populations. However, the limited number of binary and STR Y chromosome markers used previously did not provide the phylogenetic resolution needed to infer the number of independent paternal lineages that are encompassed within the Cohanim or their coalescence times. Accordingly, we have genotyped 75 binary markers and 12 Y-STRs in a sample of 215 Cohanim from diverse Jewish communities, 1,575 Jewish men from across the range of the Jewish Diaspora, and 2,099 non-Jewish men from the Near East, Europe, Central Asia, and India. While Cohanim from diverse backgrounds carry a total of 21 Y chromosome haplogroups, 5 haplogroups account for 79.5% of Cohanim Y chromosomes. The most frequent Cohanim lineage (46.1%) is marked by the recently reported P58 T->C mutation, which is prevalent in the Near East. Based on genotypes at 12 Y-STRs, we identify an extended CMH on the J-P58* background that predominates in both Ashkenazi and non-Ashkenazi Cohanim and is remarkably absent in non-Jews. The estimated divergence time of this lineage based on 17 STRs is 3,190 ± 1,090 years. Notably, the second most frequent Cohanim lineage (J-M410*, 14.4%) contains an extended modal haplotype that is also limited to Ashkenazi and non-Ashkenazi Cohanim and is estimated to be 4.2 ± 1.3 ky old. These results support the hypothesis of a common origin of the CMH in the Near East well before the dispersion of the Jewish people into separate communities, and indicate that the majority of contemporary Jewish priests descend from a limited number of paternal lineages

    Melanesian and Asian origins of Polynesians: mtDNA and Y chromosome gradients across the Pacific

    Get PDF
    The human settlement of the Pacific Islands represents one of the most recent major migration events of mankind. Polynesians originated in Asia according to linguistic evidence or in Melanesia according to archaeological evidence. To shed light on the genetic origins of Polynesians, we investigated over 400 Polynesians from 8 island groups, in comparison with over 900 individuals from potential parental populations of Melanesia, Southeast and East Asia, and Australia, by means of Y chromosome (NRY) and mitochondrial DNA (mtDNA) markers. Overall, we classified 94.1% of Polynesian Y chromosomes and 99.8% of Polynesian mtDNAs as of either Melanesian (NRY-DNA: 65.8%, mtDNA: 6%) or Asian (NRY-DNA: 28.3%, mtDNA: 93.8%) origin, suggesting a dual genetic origin of Polynesians in agreement with the "Slow Boat" hypothesis. Our data suggest a pronounced admixture bias in Polynesians toward more Melanesian men than women, perhaps as a result of matrilocal residence in the ancestral Polynesian society. Although dating methods are consistent with somewhat similar entries of NRY/mtDNA haplogroups into Polynesia, haplotype sharing suggests an earlier appearance of Melanesian haplogroups than those from Asia. Surprisingly, we identified gradients in the frequency distribution of some NRY/mtDNA haplogroups across Polynesia and a gradual west-to-east decrease of overall NRY/mtDNA diversity, not only providing evidence for a west-to-east direction of Polynesian settlements but also suggesting that Pacific voyaging was regular rather than haphazard. We also demonstrate that Fiji played a pivotal role in the history of Polynesia: humans probably first migrated to Fiji, and subsequent settlement of Polynesia probably came from Fiji

    Ranks of Genuine Associations in Whole-Genome Scans

    No full text
    With the recent advances in high-throughput genotyping techniques, it is now possible to perform whole-genome association studies to fine map causal polymorphisms underlying important traits that influence susceptibility to human diseases and efficacy of drugs. Once a genome scan is completed the results can be sorted by the association statistic value. What is the probability that true positives will be encountered among the first most associated markers? When a particular polymorphism is found associated with the trait, there is a chance that it represents either a “true” or a “false” association (TA vs. FA). Setting appropriate significance thresholds has been considered to provide assurance of sufficient odds that the associations found to be significant are genuine. However, the problem with genome scans involving thousands of markers is that the statistic values of FAs can reach quite extreme magnitudes. In such situations, the distributions corresponding to TAs and the most extreme FAs become comparable and significance thresholds tend to penalize TAs and FAs in a similar fashion. When sorting between true and false associations, the “typical” place (i.e., rank) of TAs among the most significant outcomes becomes important, ordered by the association statistic value. The distribution of ranks that we study here allows calculation of several useful quantities. In particular, it gives the number of most significant markers needed for a follow-up study to guarantee that a true association is included with certain probability. This can be calculated conditionally on having applied a multiple-testing correction. Effects of multilocus (e.g., haplotype association) tests and impact of linkage disequilibrium on the distribution of ranks associated with TAs are evaluated and can be taken into account

    Features of Evolution and Expansion of Modern Humans, Inferred from Genomewide Microsatellite Markers

    Get PDF
    We study data on variation in 52 worldwide populations at 377 autosomal short tandem repeat loci, to infer a demographic history of human populations. Variation at di-, tri-, and tetranucleotide repeat loci is distributed differently, although each class of markers exhibits a decrease of within-population genetic variation in the following order: sub-Saharan Africa, Eurasia, East Asia, Oceania, and America. There is a similar decrease in the frequency of private alleles. With multidimensional scaling, populations belonging to the same major geographic region cluster together, and some regions permit a finer resolution of populations. When a stepwise mutation model is used, a population tree based on T(D) estimates of divergence time suggests that the branches leading to the present sub-Saharan African populations of hunter-gatherers were the first to diverge from a common ancestral population (∌71–142 thousand years ago). The branches corresponding to sub-Saharan African farming populations and those that left Africa diverge next, with subsequent splits of branches for Eurasia, Oceania, East Asia, and America. African hunter-gatherer populations and populations of Oceania and America exhibit no statistically significant signature of growth. The features of population subdivision and growth are discussed in the context of the ancient expansion of modern humans

    Robustness of the inference of human population structure: A comparison of X-chromosomal and autosomal microsatellites

    No full text
    Abstract In this paper, data on 20 X-chromosomal microsatellite polymorphisms from the HGDP-CEPH cell line panel are used to infer human population structure. Inferences from these data are compared to those obtained from autosomal microsatellites. Some of the major features of the structure seen with 377 autosomal markers are generally visible with the X-linked markers, although the latter provide less resolution. Differences between the X-chromosomal and autosomal results can be explained without requiring major differences in demographic parameters between males and females. The dependence of the partitioning on the number of individuals sampled from each region and on the number of markers used is discussed.</p
    corecore