43 research outputs found

    Rapid roll Inflation with Conformal Coupling

    Full text link
    Usual inflation is realized with a slow rolling scalar field minimally coupled to gravity. In contrast, we consider dynamics of a scalar with a flat effective potential, conformally coupled to gravity. Surprisingly, it contains an attractor inflationary solution with the rapidly rolling inflaton field. We discuss models with the conformal inflaton with a flat potential (including hybrid inflation). There is no generation of cosmological fluctuations from the conformally coupled inflaton. We consider realizations of modulated (inhomogeneous reheating) or curvaton cosmological fluctuations in these models. We also implement these unusual features for the popular string-theoretic warped inflationary scenario, based on the interacting D3-anti D3 branes. The original warped brane inflation suffers a large inflaton mass due to conformal coupling to 4-dimensional gravity. Instead of considering this as a problem and trying to cure it with extra engineering, we show that warped inflation with the conformally coupled, rapidly rolling inflaton is yet possible with N=37 efoldings, which requires low energy scales 1-100 TeV of inflation. Coincidentally, the same warping numerology can be responsible for the hierarchy. It is shown that the scalars associated with angular isometries of the warped geometry of compact manifold (e.g. S^3 of KS geometry) have solutions identical to conformally coupled modes and also cannot be responsible for cosmological fluctuations. We discuss other possibilities.Comment: 15 pages, version accepted for publication in PR

    Equation of state and Beginning of Thermalization After Preheating

    Get PDF
    We study the out-of-equilibrium nonlinear dynamics of fields after post-inflationary preheating. During preheating, the energy in the homogeneous inflaton is exponentially rapidly transfered into highly occupied out-of-equilibrium inhomogeneous modes, which subsequently evolve towards equilibrium. The infrared modes excited during preheating evolve towards a saturated distribution long before thermalization completes. We compute the equation of state during and immediately after preheating. It rapidly evolves towards radiation domination long before the actual thermal equilibrium is established. The exact time of this transition is a non-monotonic function of the coupling between the inflaton and the decay products, and it varies only very weakly (around 10^(-35) s) as this coupling changes over several orders of magnitude. This result is applied to refine the relation between the number of efoldings N and the physical wavelength of perturbations generated during inflation. We also discuss the implications for the theory of modulated perturbations from preheating. We finally argue that many questions of the thermal history of the universe should be addressed in terms of pre-thermalization, illustrating this point with a calculation of perturbative production of gravitinos immediately after chaotic inflation. We also highlight the effects of three-legs inflaton interactions on the dynamics of preheating and thermalization in an expanding universe.Comment: 15 pages, 13 figure

    Exact identification of the radion and its coupling to the observable sector

    Full text link
    Braneworld models in extra dimensions can be tested in laboratory by the coupling of the radion to the Standard Model fields. The identification of the radion as a canonically normalized field involves a careful General Relativity treatment: if a bulk scalar is responsible for the stabilization of the system, its fluctuations are entangled with the perturbations of the metric and they also have to be taken into account (similarly to the well-developed theory of scalar metric perturbations in 4D cosmology with a scalar field). Extracting a proper dynamical variable in a warped geometry/scalar setting is a nontrivial task, performed so far only in the limit of negligible backreaction of the scalar field on the background geometry. We perform the general calculation, diagonalizing the action up to second order in the perturbations and identifying the physical eigenmodes of the system for any amplitude of the bulk scalar. This computation allows us to derive a very simple expression for the exact coupling of the eigenmodes to the Standard Model fields on the brane, valid for an arbitrary background configuration. As an application, we discuss the Goldberger-Wise mechanism for the stabilization of the radion in the Randall-Sundrum type models. The existing studies, limited to small amplitude of the bulk scalar field, are characterized by a radion mass which is significantly below the physical scale at the observable brane. We extend them beyond the small backreaction regime. For intermediate amplitudes, the radion mass approaches the electroweak scale, while its coupling to the observable brane remains nearly constant. At very high amplitudes, the radion mass instead decreases, while the coupling sharply increases. Severe experimental constraints are expected in this regime.Comment: 20 pages, 6 figure

    The Development of Equilibrium After Preheating

    Full text link
    We present a fully nonlinear study of the development of equilibrium after preheating. Preheating is the exponentially rapid transfer of energy from the nearly homogeneous inflaton field to fluctuations of other fields and/or the inflaton itself. This rapid transfer leaves these fields in a highly nonthermal state with energy concentrated in infrared modes. We have performed lattice simulations of the evolution of interacting scalar fields during and after preheating for a variety of inflationary models. We have formulated a set of generic rules that govern the thermalization process in all of these models. Notably, we see that once one of the fields is amplified through parametric resonance or other mechanisms it rapidly excites other coupled fields to exponentially large occupation numbers. These fields quickly acquire nearly thermal spectra in the infrared, which gradually propagates into higher momenta. Prior to the formation of total equilibrium, the excited fields group into subsets with almost identical characteristics (e.g. group effective temperature). The way fields form into these groups and the properties of the groups depend on the couplings between them. We also studied the onset of chaos after preheating by calculating the Lyapunov exponent of the scalar fields.Comment: 15 pages, 23 figure

    Reheating after Inflation

    Get PDF
    The theory of reheating of the Universe after inflation is developed. The transition from inflation to the hot Universe turns out to be strongly model-dependent and typically consists of several stages. Immediately after inflation the field ϕ\phi begins rapidly rolling towards the minimum of its effective potential. Contrary to some earlier expectations, particle production during this stage does not lead to the appearance of an extra friction term Γϕ˙\Gamma\dot\phi in the equation of motion of the field ϕ\phi. Reheating becomes efficient only at the next stage, when the field ϕ\phi rapidly oscillates near the minimum of its effective potential. We have found that typically in the beginning of this stage the classical inflaton field ϕ\phi very rapidly (explosively) decays into ϕ\phi-particles or into other bosons due to broad parametric resonance. This stage cannot be described by the standard elementary approach to reheating based on perturbation theory. The bosons produced at this stage, as well as some part of the classical field ϕ\phi which survives the stage of explosive reheating, should further decay into other particles, which eventually become thermalized. The last stages of decay can be described in terms of perturbation theory. Complete reheating is possible only in those theories where a single massive ϕ\phi-particle can decay into other particles. This imposes strong constraints on the structure of inflationary models. On the other hand, this means that a scalar field can be a cold dark matter candidate even if it is strongly coupled to other fields.Comment: 7 pages, 1 figure, LaTeX, UH-IfA-94/35; SU-ITP-94-13; YITP/U-94-15 (paper replaced by its version to be published in Phys. Rev. Lett.

    Inhomogeneous Fragmentation of the Rolling Tachyon

    Get PDF
    Dirac-Born-Infeld type effective actions reproduce many aspects of string theory classical tachyon dynamics of unstable Dp-branes. The inhomogeneous tachyon field rolling from the top of its potential forms topological defects of lower codimensions. In between them, as we show, the tachyon energy density fragments into a p-dimensional web-like high density network evolving with time. We present an analytic asymptotic series solution of the non-linear equations for the inhomogeneous tachyon and its stress energy. The generic solution for a tachyon field with a runaway potential in arbitrary dimensions is described by the free streaming of noninteracting massive particles whose initial velocities are defined by the gradients of the initial tachyon profile. Thus, relativistic particle mechanics is a dual picture of the tachyon field effective action. Implications of this picture for inflationary models with a decaying tachyon field are discussed.Comment: 10 pages, 1 figur

    On the Theory of Fermionic Preheating

    Get PDF
    In inflationary cosmology, the particles constituting the Universe are created after inflation due to their interaction with moving inflaton field(s) in the process of preheating. In the fermionic sector, the leading channel is out-of equilibrium particle production in the non-perturbative regime of parametric excitation, which respects Pauli blocking but differs significantly from the perturbative expectation. We develop theory of fermionic preheating coupling to the inflaton, without and with expansion of the universe, for light and massive fermions, to calculate analytically the occupation number of created fermions, focusing on their spectra and time evolution. In the case of large resonant parameter qq we extend for rermions the method of successive parabolic scattering, earlier developed for bosonic preheating. In an expanding universe parametric excitation of fermions is stochastic. Created fermions very quickly, within tens of inflaton oscillations, fill up a sphere of radius q1/4\simeq q^{1/4} in monetum space. We extend our formalism to the production of superheavy fermions and to `instant' fermion creation.Comment: 14 pages, latex, 12 figures, submitted for publicatio

    Dynamics of Symmetry Breaking and Tachyonic Preheating

    Get PDF
    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.Comment: 7 pages, 6 figures. Higher quality figures and computer generated movies in gif format illustrating our results can be found at http://physics.stanford.edu/gfelder/hybri

    Theory and Numerics of Gravitational Waves from Preheating after Inflation

    Get PDF
    Preheating after inflation involves large, time-dependent field inhomogeneities, which act as a classical source of gravitational radiation. The resulting spectrum might be probed by direct detection experiments if inflation occurs at a low enough energy scale. In this paper, we develop a theory and algorithm to calculate, analytically and numerically, the spectrum of energy density in gravitational waves produced from an inhomogeneous background of stochastic scalar fields in an expanding universe. We derive some generic analytical results for the emission of gravity waves by stochastic media of random fields, which can test the validity/accuracy of numerical calculations. We contrast our method with other numerical methods in the literature, and then we apply it to preheating after chaotic inflation. In this case, we are able to check analytically our numerical results, which differ significantly from previous works. We discuss how the gravity wave spectrum builds up with time and find that the amplitude and the frequency of its peak depend in a relatively simple way on the characteristic spatial scale amplified during preheating. We then estimate the peak frequency and amplitude of the spectrum produced in two models of preheating after hybrid inflation, which for some parameters may be relevant for gravity wave interferometric experiments.Comment: 28 pages, 10 figures, refs added, published versio
    corecore