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Inhomogeneous fragmentation of the rolling tachyon

Gary Felder*
Smith College Physics Department, Northampton, Massachusetts 01063, USA
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Dirac-Born-Infeld type effective actions reproduce many aspects of string theory classical tachyon dynamics
of unstable Dp-branes. The inhomogeneous tachyon field rolling from the top of its potential forms topological
defects of lower codimensions. In between them, as we show, the tachyon energy density fragments into a
p-dimensional web-like high density network evolving with time. We present an analytic asymptotic series
solution of the nonlinear equations for the inhomogeneous tachyon and its stress energy. The generic solution
for a tachyon field with a runaway potential in arbitrary dimensions is described by the free streaming of
noninteracting massive particles whose initial velocities are defined by the gradients of the initial tachyon
profile. Thus, relativistic particle mechanics is a dual picture of the tachyon field effective action. Implications
of this picture for inflationary models with a decaying tachyon field are discussed.

DOI: 10.1103/PhysRevD.70.046004 PACS number~s!: 11.25.2w, 98.80.Cq

I. INTRODUCTION

In this paper we investigate generic inhomogeneous solu-
tions of Dirac-Born-Infeld type theories

S52E dp11xV~T!A11a8]mT]mT1O~]m]mT!, ~1!

whereT(xm) is a ~dimensionless! scalar field andV(T) is its
runaway potential~no minima!. In string theorya8 is a
square of the fundamental length scale; we puta851. The
action ~1! was proposed in@1# as an effective field theory
description of the open string theory tachyon which de-
scribes unstable non-BPS D-branes. In application to the
string theory tachyon~1! should be understood in the trun-
cated approximation, i.e., valid only in the regime where
higher derivatives are not large. The potential is often chosen
to beV(T)5tp /coshT for the bosonic case which we con-
sider. At large T the potential has a runaway character
V(T).e2T with the ground state at infinity.

There are several motivations for studying the properties
of the effective action~1!. It is difficult to find the open
string tachyon dynamics for generic tachyon inhomogene-
ities. The action~1!, meanwhile, permits us to study compli-
cated tachyon dynamics in terms of classical field theory.
The relatively simple formulation of tachyon dynamics in
terms of the effective action~1!, has therefore triggered sig-
nificant interest in the investigation of the field theory of the
tachyon and the possible role of tachyons in cosmology. In-
deed, the end point of string theory brane inflation is annihi-
lation of D2D̄ branes, which leads to the formation and
subsequent fragmentation of a tachyon condensate@2#. Thus
the potential role of the tachyon in cosmology cannot be
understood without first understanding its fragmentation.

Apart from its application to the string theory tachyon, the
search for the structure of general solutions of the theory~1!
is an interesting mathematical problem in and of itself. The
equation of motion arising from the action~1! is an example
of a complicated, nonlinear, partial differential equation
which, as we will show, admits a relatively simple, general,
inhomogeneous solution. The evolution of the tachyon field
T(t,x) can be viewed as a mappingT(t0 ,x0)→T(t,x) that
becomes multivalued and generates singularities at caustics
@3#. Besides the DBI type theories~1!, there are other cos-
mologically motivated phenomenological models of fields
with high derivatives which share the problematics of~1!.

If the potentialV(T) is symmetric aroundT50 and the
inhomogeneous tachyon field begins rolling from the top of
its effective potential, then topological defects~kinks! can
form due to symmetry breaking@4#. In this paper we con-
sider what happens to the tachyon field in the region where it
rolls down one side of the potential. We will see the forma-
tion of sharp features in the tachyon energy density due to its
fragmentation. These features, which are related to the con-
vergence of characteristics of the fieldT, have to be distin-
guished from topological defects. The full picture must in-
corporate both effects, formation of kinks and tachyon
fragmentation in the space between them. Because it is hard
to study with CFT tachyon dynamics with a generic, spatially
varying profile@5#, previous calculations dealt with a plane
wave tachyon profile@6#. In this case the tachyon decays into
equidistant plane-parallel singular hypersurfaces of co-
dimension one, which were interpreted as kinks. The effec-
tive action for a plane wave tachyon predicts similar result,
as we will see later. However, this inhomogeneous profile is
atypical in the sense that fragmentation between kinks does
not occur. In the general case we expect both structures, web-
like fragmentation and topological defects.

In this paper we concentrate on tachyon fragmentation
between kinks. We begin by showing an image that illus-
trates the fragmentation of the tachyon field as it rolls down
one side of its potential. Figure 1 shows the result of a nu-
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merical lattice simulation of the energy density of a two di-
mensional tachyon field rolling down one side of its poten-
tial, as described by the equation of motion~2! below. We
used theLATTICEEASY code@7# adapted for Eq.~2!. Starting
from an initial random Gaussian fieldT the energy rapidly
became fragmented into an anisotropic structure of clumps
joined by filaments into a web-like network.

The tachyon energy density pattern in Fig. 1 is reminis-
cent of the illumination pattern at the bottom of the swim-
ming pool or the web-like large scale structure of the uni-
verse. The similarity is not coincidental: the underlying
mathematics has common features in all three cases. In what
follows we present an analytic solution to the tachyon equa-
tion of motion that describes in detail the formation of this
structure. We begin by describing a good approximation to
the dynamics of Eq.~2! and go on to show how to extend
this approximation into an asymptotic series for the fieldT.

II. THE FREE STREAMING APPROXIMATION

The equation of motion for the tachyon field follows from
the action~1!,

]m]mT2
]m]nT

11]aT]aT
]mT]nT2

V,T

V
50. ~2!

For simplicity we will confine ourselves to a pure exponen-
tial potential V(T)5e2T, however our results are qualita-
tively valid for any runaway potentials. The energy density
of the tachyon fieldr5T00 is

r5
e2T

A11]mT]mT
Ṫ21e2TA11]mT]mT. ~3!

We have observed solving~2! numerically@3# that if we
define an operatorP(T)511]mT]mT the fieldT rapidly ap-
proaches a regime in whichP(T)'0. We write this by say-
ing

T~xm!'S~xm!, ~4!

whereS satisfies the equation

Ṡ22~“xS!251. ~5!

The dot represents a time derivative and the spatial deriva-
tives are with respect to thep spatial coordinatesx on the
brane. This equation is the Hamilton-Jacobi equation for the
evolution of the wave front function of free steaming mas-
sive relativistic particles.

Let us consider this particle description. At some initial
time t0 we can label the position of each particle with a
vector q. Equivalently we can say thatq parametrizes the
different particles. The initial four-velocity of the particle is
given by]mS0. If we further define the proper timet along
each particle’s trajectory, we can switch from coordinates
(t,x) to (t(t,x),q(t,x)) and obtain an exact parametric solu-
tion to ~5! @3#,

x5q2“qS0t, ~6!

t5A11u¹qS0u2t, ~7!

S5S01t. ~8!

The interpretation of the solution~6! is very simple and in-
tuitive. It tells us that the fieldSpropagates along the trajec-
tories of the massive relativistic particles, growing linearly
with proper time. The slope of each characteristic depends
only on the initial gradients ofS0 on that characteristic.

In geometrical optics photons are massless, but the quali-
tative picture of their wave front propagation is similar. This
expains the similarity between the two dimensional web-like
pattern of Fig. 1 and the illumination pattern at the bottom of
a swimming pool. The focusing of particle trajectories cor-
responds to higher density concentrations and further, to the
formation of caustics at the loci where trajectories cross.

III. THE FULL SOLUTION

Let us now consider the energy density. Looking at Eq.
~3! we see that the exponential pieces are growing exponen-
tially small, as are the arguments of the square roots. The
second term in~3! will thus rapidly become irrelevant and
we need consider only how the exponentially small numera-
tor and denominator of the first term will be related.~The
leading term inṪ2 is one.!

To calculater we will need to go beyond the free stream-
ing approximation~4!. In view of the exponential in the nu-
merator ofr we conjecture thatT can be expanded as

T~xm!'S1 f 1@S#e22S, ~9!

where f 1 is a sub-exponential functional ofS. ~We could
include a lower order termf 0e2S. As we explain below, we
can solve exactly forf 0 in that case and we find that its
effects can be absorbed intoSand f 1.! Now we are going to
check the validity of this expansion.

Plugging the expansion~9! into Eq. ~2! and keeping only
terms proportional toe22S gives the following equation for
the sub-exponential functionf 1:

FIG. 1. The focusing of energy density into a web-like structure
due to caustic formation. Whiter regions correspond to higher den-
sities. The left panel shows a nearly homogeneous initial Gaussian
random field profile and the right panel shows the same field a short
time later.
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~]mS]nS!]m]n f 112~12hS!]mS]m f 124hS f150,
~10!

wherehS5]n]nS52S̈1¹x
2S.

This equation can be dramatically simplified by changing
from (t, x) coordinates to (t, q) coordinates, as defined by
the characteristics ofS in ~6!–~7!. In these coordinates,f 1
has no spatial derivatives and Eq.~10! reduces to

f 1,tt22~12hS! f 1,t24hS f150. ~11!

Note thathS can be calculated either with respect to (t, x)
or (t, q) coordinates. We can further simplify this equation
by introducing a new variabley,

y[2 f 12 f 1,t . ~12!

Equation~11! can be rewritten in terms ofy,

y,t12hSy50, ~13!

which can be immediately solved to givey(t,q)
5y0(q)exp(22*tdt8hS). From this and~12!

f 1~t,q!5 f 1i~q!e2tE t

dt8expS 22t822E t8
dt9hSD .

~14!

To proceed further we need to calculatehS. In principle
it can be done from the solution~6! in parametric form by
inverting the (t,x)→(t,q) coordinate transformation matrix
@12#. Instead we will use the following trick. Plugging the
expansion ~9! into the energy density~3! we find r
'1/A2(2f 11]mS]m f 1). Observe that the denominator here
is exactly identicalto A2y, thus

r'
1

A2y
5r0~q!expS E t

dt8hSD . ~15!

This is precisely the expression for the energy density of free
streaming relativistic particles which obey the relativistic
continuity equation]mS(r]mS)50. In fact,~15! is the solu-
tion of this continuity equation in the coordinates (t,q).
However, there is another form of the energy density, which
is equivalent to~15!,

r5
r0~q!

U ]x

]qU
, ~16!

where the denominator is the Jacobian of thex→q transfor-
mation. Indeed, from conservation of the energy density in a
differential volume we havedpqr0(q)5dpxr, which leads
to the formula~16!. It is now straightforward to calculate the
Jacobian from the formulas~6!–~7!. In p dimensions it is a
polynomial int of orderp. For example, in the one dimen-
sional caseu]x/]qu5(tc2t), wheretc(q) is a function of
the gradients ofS0. In the two dimensional caseu]x/]qu
5(tc12t)(tc22t), wheretcn are function of¹qS0.

Comparing expressions~15! and ~16!, we can findhS
and calculatef 1 using~14!. We find that a constant originat-
ing from the integration in~14! can be absorbed inS while
the rest off 1 will be a 2p order polynomial int. This dem-
onstrates the validity of the approximation~9! by showing
that thef 1 term provides only exponentially suppressed cor-
rections to the leading term.

We could go further and include other powers ofe2S in
our expansion~9!,

T~xm!'S1 (
n50

`

f n@S#e2(n11)S. ~17!

We have explicitly checked all such terms up throughe24S,
including a possible term proportional toe2S, and found that
they simply provide corrections to the integration constants
of Sand f 1 plus terms that are exponentially suppressed rela-
tive to the ones we have discussed. We can further show that
all such termsf n have the same characteristics asS, and we
therefore conclude that the general inhomogeneous solution
T propagates along the characteristics~6!–~7!. Up to expo-
nentially small corrections~which could in principle be cal-
culated order by order!, the complete solution forT can be
represented by the two functionsS0(q) and f 1i(q).

With these results, we can evaluate the energy density
~16! to leading order using onlyf 1. For an arbitrary brane
dimensionp we have

r'r0)
n51

p

~12lnt !21, ~18!

whereln(q) are the eigenvalues of]m(Ṡ0
21]nS0). From here

we see that the energy density first reaches large values in
regions whereln(q) is maximal. For some critical trajecto-
ries qc at a critical timetc the energy density becomes sin-
gular, which corresponds to caustic formation. This is exactly
what one would expect in the picture of free streaming, mas-
sive, relativistic particles, where the energy density blows up
at the orbit crossings.

IV. CONCLUSIONS

Our most important conclusion is that the general inho-
mogeneous solution of the field theory~1! very rapidly ap-
proaches the asymptotic form~17!, which is equivalent to the
relativistic mechanics of freely propagating massive particles
with velocities va52¹qS0(qa). In other words, there is a
duality between the two Lagrangians

V~T!A11]mT]mT⇔(
a

A12va
2. ~19!

The whole process of unstableDp brane decay in the dual
picture is described as ‘‘crumbling to dust’’ of massive par-
ticles. A complete discussion of the interpretation of massive
particles and anisotropic high density structures~clumps,
filaments, sheets! which they form would be beyond the
scope of this paper. In the 111 case the high density regions
of the orbit crossing were conjectured to beD0 branes@8#.
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From the velocities of the characteristics~6! we can see
that around maxima of the initial field profile the character-
istics will tend to diverge and the profile will flatten. In re-
gions around minima, however, characteristics will tend to
converge, the profile will become sharper, and after some
critical time tc the field solution will become multivalued. In
the dual picture of relativistic particles this corresponds to
caustic formation. At the caustics the energy density blows
up. Caustic formation also entails divergences in the second
derivatives ofT, which signal the breakdown of the truncated
approximation~1!. In short the Lagrangians~19! are unable
to describe the fieldT when its solution becomes multi-
valued. In the picture of freely moving massive particles we
can include interactions to cause them to stick together as
their trajectories intersect with impact parameter;Aa8.

Let us make a remark about a one-dimensional plane
wave tachyon profileT5cos(x) rolling from the top of its
~symmetric! effective potential. Since the parts of the field
that roll to the right have no minima they do not form caus-
tics, and by symmetry the parts rolling to the left do not
either. In this particular case the tachyon fragments into
kinks only.

We can also consider a more general profile, however.
Tachyonic instability occurs for all inhomogeneous modesk
for which the effective massm25k221/a82 is negative.
Therefore the generic tachyon initial profile is a superposi-
tion of a number of modes, which produces a random Gauss-
ian field T0(q). These initial conditions typically arise from
quantum fluctuations during symmetry breaking~see e.g.
@9#!. In this case we once again expect the formation of to-

pological defects due to symmetry breaking. Outside these
defects, however, the tachyon field will fragment into a web-
like structure as shown in Fig. 1. If the defects are walls
these webs will form within each domain; if they are strings
the web of caustics will be mixed in with the strings.

If the spectrum ofT0(q) inhomogeneities has scaling
properties~as quantum fluctuations do!, then the web-like
network will evolve in a scaling manner. The smallest scale
of the web is defined by the largest tachyonic modek. The
dual picture of freely moving massive particles which stick
together as their orbits intersect gives a simple explanation of
such fragmentation.

Finally, we note the relevance of our result for cosmologi-
cal applications of the tachyon. In the context of brane infla-
tion, which ends with a pair ofD32D̄3 branes annihilating,
the tachyon is a complex field and strings will be created and
the rest of the energy is transformed into radiation@10#. If the
result of real tachyon field fragmentation which we derive
above is extended to the complex tachyon, then annihilation
of D32D̄3 branes results in the net of strings plus massive
particles with the matter dominant equation of state. The
absence of radiation domination after brane inflation may
pose a problem for the model@11#.

ACKNOWLEDGMENTS

We are grateful to D. Kutasov, A. Linde, R. Myers, S.
Shandarin, and J. Martin for useful discussions. The work by
L.K. was supported by NSERC and CIAR. G.F. wishes to
thank CITA for its hospitality during this research.

@1# A. Sen, J. High Energy Phys.04, 048 ~2002!; 07, 065 ~2002!;
Mod. Phys. Lett. A17, 1797~2002!; J. Kluson, Phys. Rev. D
62, 126003~2000!; M. Garousi, Nucl. Phys.B584, 284~2000!;
J. Minahan, J. High Energy Phys.07, 030 ~2002!; E. Bergsho-
eff, M. de Roo, T. de Wit, E. Eyras, and S. Panda,ibid. 0005,
009 ~2000!; D. Kutasov and V. Niarchos, hep-th/0304045.

@2# C.P. Burgess, M. Majumdar, D. Nolte, F. Quevedo, G. Rajesh,
and R.J. Zhang, J. High Energy Phys.07, 047 ~2001!; N.
Jones, H. Stoica, and S.H. Tye, hep-th/0203163; S. Kachru, R.
Kallosh, A. Linde, J. Maldacena, L. McAllister, and S.P.
Trivedi, J. Cosmol. Astropart. Phys.0310, 013 ~2003!.

@3# G.N. Felder, L. Kofman, and A. Starobinsky, J. High Energy
Phys.09, 026 ~2002!.

@4# G. Shiu, S.H.H. Tye, and I. Wasserman, Phys. Rev. D67,
083517 ~2003!; J. Cline, H. Firouzjahi, and P. Martineau,
hep-th/0207156; A. Sen, hep-th/0303057.

@5# A. Sen, J. High Energy Phys.10, 003 ~2002!.
@6# J.A. Harvey, D. Kutasov, and E.J. Martinec, hep-th/0003101;

F. Larsen, A. Naqvi, and S. Terashima, J. High Energy Phys.
02, 039 ~2003!.

@7# G.N. Felder and I. Tkachev, ‘‘LATTICEEASY: A program for
lattice simulations of scalar fields in an expanding universe.’’

@8# M. Berkooz, B. Craps, D. Kutasov, and G. Rajesh, J. High
Energy Phys.03, 031 ~2003!.

@9# G.N. Felder, L. Kofman, and A.D. Linde, Phys. Rev. D64,
123517~2001!.

@10# N.T. Jones, H. Stoica, and S.H.H. Tye, Phys. Lett. B563, 6
~2003!.

@11# L. Kofman and A. Linde, J. High Energy Phys.07, 004~2002!.
@12# We have carried out this explicit calculation in one and two

dimensions as a check on the method described below.

G. FELDER AND L. KOFMAN PHYSICAL REVIEW D70, 046004 ~2004!

046004-4


	Smith ScholarWorks
	8-24-2004

	Inhomogeneous Fragmentation of the Rolling Tachyon
	Gary Felder
	Lev Kofman
	Recommended Citation


	tmp.1469041497.pdf.SWOWM

