702 research outputs found

    A simple spin model for three steps relaxation and secondary proccesses in glass formers

    Full text link
    A number of general trends are known to occur in systems displaying secondary processes in glasses and glass formers. Universal features can be identified as components of large and small cooperativeness whose competition leads to excess wings or apart peaks in the susceptibility spectrum. To the aim of understanding such rich and complex phenomenology we analyze the behavior of a model combining two apart glassy components with a tunable different cooperativeness. The model salient feature is, indeed, based on the competition of the energetic contribution of groups of dynamically relevant variables, e.g., density fluctuations, interacting in small and large sets. We investigate how the model is able to reproduce the secondary processes physics without further ad hoc ingredients, displaying known trends and properties under cooling or pressing.Comment: 11 Pages, 11 Figure

    Reply to Comment on ``Spherical 2+p spin-glass model: an analytically solvable model with a glass-to-glass transition''

    Full text link
    In his Comment, Krakoviack [Phys. Rev. B (2007)] finds that the phase behavior of the s+p spin-glass model is different from what proposed by Crisanti and Leuzzi [Phys. Rev. B 73, 014412 (2006)] if s and p are larger than two and are separated well enough. He proposes a trial picture, based on a one step replica symmetry breaking solution, displaying a mode-coupling-like glass-to-glass transition line ending in a A3 singularity. However, actually, the physics of these systems changes when p-s is large, the instability of which the one step replica symmetry breaking glassy phase suffers turns out to be so wide ranging that the whole scenario proposed by Krakoviack must be seriously reconsidered.Comment: 4 pages, 5 figure; reply to arXiv:0705.3187. To be published in Phys Rev B 76 (2007

    An alternative wind profile formulation for urban areas in neutral conditions

    Get PDF
    On the basis of meteorological observations conducted within the city of Rome, Italy, a new formulation of the wind-speed profile valid in urban areas and neutral conditions is developed. It is found that the role played by the roughness length in the canonical log-law profile can be taken by a local length scale, depending on both the surface cover and the distance above the ground surface, which follows a pattern of exponential decrease with height. The results show that the proposed model leads to increased performance compared with that obtained by using other approaches found in the literature

    The Complexity of the Spherical pp-spin spin glass model, revisited

    Full text link
    Some questions concerning the calculation of the number of ``physical'' (metastable) states or complexity of the spherical pp-spin spin glass model are reviewed and examined further. Particular attention is focused on the general calculation procedure which is discussed step-by-step.Comment: 13 pages, 3 figure

    Complexity of the Sherrington-Kirkpatrick Model in the Annealed Approximation

    Get PDF
    A careful critical analysis of the complexity, at the annealed level, of the Sherrington-Kirkpatrick model has been performed. The complexity functional is proved to be always invariant under the Becchi-Rouet-Stora-Tyutin supersymmetry, disregarding the formulation used to define it. We consider two different saddle points of such functional, one satisfying the supersymmetry [A. Cavagna {\it et al.}, J. Phys. A {\bf 36} (2003) 1175] and the other one breaking it [A.J. Bray and M.A. Moore, J. Phys. C {\bf 13} (1980) L469]. We review the previews studies on the subject, linking different perspectives and pointing out some inadequacies and even inconsistencies in both solutions.Comment: 20 pages, 4 figure

    The random Blume-Capel model on cubic lattice: first order inverse freezing in a 3D spin-glass system

    Full text link
    We present a numerical study of the Blume-Capel model with quenched disorder in 3D. The phase diagram is characterized by spin-glass/paramagnet phase transitions of both first and second order in the thermodynamic sense. Numerical simulations are performed using the Exchange-Monte Carlo algorithm, providing clear evidence for inverse freezing. The main features at criticality and in the phase coexistence region are investigated. The whole inverse freezing transition appears to be first order. The second order transition appears to be in the same universality class of the Edwards-Anderson model. The nature of the spin-glass phase is analyzed by means of the finite size scaling behavior of the overlap distribution functions and the four-spins real-space correlation functions. Evidence for a replica symmetry breaking-like organization of states is provided.Comment: 18 pages, 24 figures, 7 table

    Neural-Based Nonlinear Device Models for Intermodulation Analysis

    Get PDF
    A new procedure to learn a nonlinear model together with its derivative parameters using a composite neural network is presented.So far neural networks have never been used to extract large-signal device model accounting for distortion parameters.Applying this method to FET devices leads to nonlinear models for current- voltage functions which allow improved prediction of weak and mildly device nonlinearities in the whole bias region. The resulting models have demonstrated to be suitable for both small-signal and large-signal analyses,including intermodulation distortion prediction

    On Equilibrium Dynamics of Spin-Glass Systems

    Full text link
    We present a critical analysis of the Sompolinsky theory of equilibrium dynamics. By using the spherical 2+p2+p spin glass model we test the asymptotic static limit of the Sompolinsky solution showing that it fails to yield a thermodynamically stable solution. We then present an alternative formulation, based on the Crisanti, H\"orner and Sommers [Z. f\"ur Physik {\bf 92}, 257 (1993)] dynamical solution of the spherical pp-spin spin glass model, reproducing a stable static limit that coincides, in the case of a one step Replica Symmetry Breaking Ansatz, with the solution at the dynamic free energy threshold at which the relaxing system gets stuck off-equilibrium. We formally extend our analysis to any number of Replica Symmetry Breakings RR. In the limit R→∞R\to\infty both formulations lead to the Parisi anti-parabolic differential equation. This is the special case, though, where no dynamic blocking threshold occurs. The new formulation does not contain the additional order parameter Δ\Delta of the Sompolinsky theory.Comment: 24 pages, 6 figure

    Complexity in Mean-Field Spin-Glass Models: Ising pp-spin

    Full text link
    The Complexity of the Thouless-Anderson-Palmer (TAP) solutions of the Ising pp-spin is investigated in the temperature regime where the equilibrium phase is one step Replica Symmetry Breaking. Two solutions of the resulting saddle point equations are found. One is supersymmetric (SUSY) and includes the equilibrium value of the free energy while the other is non-SUSY. The two solutions cross exactly at a value of the free energy where the replicon eigenvalue is zero; at low free energy the complexity is described by the SUSY solution while at high free energy it is described by the non-SUSY solution. In particular the non-SUSY solution describes the total number of solutions, like in the Sherrington-Kirkpatrick (SK) model. The relevant TAP solutions corresponding to the non-SUSY solution share the same feature of the corresponding solutions in the SK model, in particular their Hessian has a vanishing isolated eigenvalue. The TAP solutions corresponding to the SUSY solution, instead, are well separated minima.Comment: 13 pages, 9 figure
    • …
    corecore