231 research outputs found
Pancreas Transplantation from Donors after Circulatory Death:an Irrational Reluctance?
Purpose of Review Beta-cell replacement is the best therapeutic option for patients with type 1 diabetes. Because of donor scarcity, more extended criteria donors are used for transplantation. Donation after circulatory death donors (DCD) are not commonly used for pancreas transplantation, because of the supposed higher risk of complications. This review gives an overview on the pathophysiology, risk factors, and outcome in DCD transplantation and discusses different preservation methods. Recent Findings Studies on outcomes of DCD pancreata show similar results compared with those of donation after brain death (DBD), when accumulation of other risk factors is avoided. Hypothermic machine perfusion is shown to be a safe method to improve graft viability in experimental settings. Summary DCD should not be the sole reason to decline a pancreas for transplantation. Adequate donor selection and improved preservation techniques can lead to enhanced pancreas utilization and outcome
Clinical course and therapeutic approach to varicella zoster virus infection in children with rheumatic autoimmune diseases under immunosuppression.
To analyze the clinical presentation and complications of varicella zoster virus (VZV) infection in children with rheumatic diseases treated with immunosuppressive medication such as biological disease-modifying antirheumatic drugs (bDMARDs) and/or conventional disease-modifying antirheumatic drugs (cDMARDs), and to analyze the therapeutic approach to VZV infections with respect to the concomitant immunosuppressive treatment.
Retrospective multicenter study using the Swiss Pediatric Rheumatology registry. Children with rheumatic diseases followed in a Swiss center for pediatric rheumatology and treated with cDMARD and/or bDMARD with a clinical diagnosis of varicella or herpes zoster between January 2004 and December 2013 were included.
Twenty-two patients were identified, of whom 20 were treated for juvenile idiopathic arthritis, 1 for a polyglandular autoimmune syndrome type III, and 1 for uveitis. Of these 22 patients, 16 had varicella and 6 had herpes zoster. Median age at VZV disease was 7.6 years (range 2 to 17 years), with 6.3 years (range 2 to 17 years) for those with varicella and 11.6 years (range 5 to 16 years) for those with herpes zoster. The median interval between start of immunosuppression and VZV disease was 14.1 months (range 1 to 63 months). Two patients had received varicella vaccine (1 dose each) prior to start of immunosuppression. Concomitant immunosuppressive therapy was methotrexate (MTX) monotherapy (n = 9) or bDMARD monotherapy (n = 2), or a combination of bDMARD with prednisone, MTX or Leflunomide (n = 11). Four patients experienced VZV related complications: cellulitis in 1 patient treated with MTX, and cellulitis, sepsis and cerebellitis in 3 patients treated with biological agents and MTX combination therapy. Six children were admitted to hospital (range of duration: 4 to 9 days) and 12 were treated with valaciclovir or aciclovir.
The clinical course of varicella and herpes zoster in children under immunosuppression is variable, with 4 (18 %) of 22 children showing a complicated course. Thorough assessment of VZV disease and vaccination history and correct VZV vaccination according to national guidelines at diagnosis of a rheumatic autoimmune disease is essential to minimize VZV complications during a later immunosuppressive treatment
Kidney tissue proteome profiles in short versus long duration of delayed graft function – a pilot study in donation after circulatory death donors
Introduction: Delayed graft function (DGF) is often defined as the need for dialysis treatment in the first week after a kidney transplantation. This definition, though readily applicable, is generic and unable to distinguish between “types” of DGF or time needed to recover function that may also significantly affect longer-term outcomes. We aimed to profile biological pathways in donation after circulatory death (DCD) kidney donors that correlate with DGF and different DGF durations.
Methods: A total of N = 30 DCD kidney biopsies were selected from the UK Quality in Organ Donation (QUOD) biobank and stratified according to DGF duration (immediate function, IF n = 10; “short-DGF” (1–6 days), SDGF n = 10; “long-DGF” (7–22 days), LDGF n = 10). Samples were matched for donor and recipient demographics and analyzed by label-free quantitative (LFQ) proteomics, yielding identification of N = 3378 proteins.
Results: Ingenuity pathway analysis (IPA) on differentially abundant proteins showed that SDGF kidneys presented upregulation of stress response pathways, whereas LDGF presented impaired response to stress, compared to IF. LDGF showed extensive metabolic deficits compared to IF and SDGF.
Conclusion: DCD kidneys requiring dialysis only in the first week posttransplant present acute cellular injury at donation, alongside repair pathways upregulation. In contrast, DCD kidneys requiring prolonged dialysis beyond 7 days present minimal metabolic and antioxidant responses, suggesting that current DGF definitions might not be adequate in distinguishing different patterns of injury in donor kidneys contributing to DGF
Elevated plasma free thiols are associated with early and one-year graft function in renal transplant recipients
Background Reduced free thiols in plasma are indicative of oxidative stress, which is an important contributor to ischaemia-reperfusion injury (IRI) in kidney transplantation leading to kidney damage and possibly delayed graft function (DGF). In a post-hoc, exploratory analysis of the randomised controlled CONTEXT trial, we investigated whether higher (i.e. less oxidised) plasma levels of free thiols as a biomarker of reduced oxidative stress are associated with a better initial graft function or a higher GFR. Methods Free thiol levels were measured in plasma at baseline, 30 and 90 minutes after reperfusion of the kidney as well as at Day 1, Day 5 and twelve months after kidney transplantation in 217 patients from the CONTEXT study. Free thiol levels were compared to the kidney graft function measured as the estimated time to a 50% reduction in plasma creatinine (tCr50), the risk of DGF and measured GFR (mGFR) at Day 5 and twelve months after transplantation. Results Higher levels of free thiols at Day 1 and Day 5 are associated with higher mGFR at Day 5 (pConclusion Higher levels of plasma free thiols at Day 1 and Day 5, which are reflective of lower levels of oxidative stress, are associated with better early and late graft function in recipients of a kidney graft from deceased donors. Trial registration ClinicalTrials.gov Identifier:NCT01395719
Different selectivities of oxidants during oxidation of methionine residues in the α-1-proteinase inhibitor
AbstractOxidation of the reactive site methionine (Met) in α-1-proteinase inhibitor (α-1-PI) to methionine sulfoxide (Met(O)) is known to cause depletion of its elastase inhibitory activity. To estimate the selectivity of different oxidants in converting Met to Met(O) in α-1-PI, we measured the molar ratio Met(O)/α-1-PI at total inactivation. This ratio was determined to be 1.2 for both the myeloperoxidase/H2O2/chloride system and the related compound NH2Cl. With taurine monochloramine, another myeloperoxidase-related oxidant, 1.05 mol Met(O) were generated per mol α-1-PI during inactivation. These oxidants attack preferentially one Met residue in α-1-PI, which is identical with Met 358, as concluded from the parallelism of loss of elastase inhibitory activity and oxidation of Met. A similar high specificity for Met oxidation was determined for the xanthine oxidase-derived oxidants. In contrast, the ratio found for ozone and m-chloroperoxybenzoic acid was 6.0 and 5.0, respectively, indicating oxidation of additional Met residues besides the reactive site Met in α-1-PI, i.e. unselective action of these oxidants. Further studies were performed on the efficiency of oxidants for total depletion of the elastase inhibitory capacity of α-1-PI. Ozone and m-chloroperoxybenzoic acid were 10-fold less effective and the superoxide anion/hydroxyl radicals were 30–50-fold less effective to inactivate the elastase inhibitory activity as compared to the myeloperoxidase-derived oxidants. The myeloperoxidase-related oxidants are discussed as important regulators of α-1-PI activity in vivo
Reference values for low muscle mass and myosteatosis using tomographic muscle measurements in living kidney donors
Low muscle mass and myosteatosis are associated with poor clinical outcomes. Computed tomography (CT) imaging is an objective method for muscle mass and quality assessment; however consensus on cut-off values is lacking. This study assessed age-, sex-, and body mass index (BMI)-specific reference values of skeletal muscle parameters and correlated muscle mass with 24-h urinary creatinine excretion (24-h UCE). In total, 960 healthy subjects were included in this study. Muscle mass and quality were determined using axial CT slices at the vertebral level L3. The muscle area was indexed for height (skeletal muscle index [SMI]). The mean age was 53 ± 11 years, and 50% were male. The SMI reference values for low muscle mass in males were 38.8 cm2/m2 (20–29 years), 39.2 (30–39 years), 39.9 (40–49 years), 39.0 (50–59 years), 37.0 (60–69 years), and 36.8 (70–79 years). For females, these reference values were 37.5 cm2/m2 (20–29 years), 35.5 (30–39 years), 32.8 (40–49 years), 33.2 (50–59 years), 31.2 (60–69 years), and 31.5 (70–79 years). 24-h UCE and SMI were significantly correlated (r = 0.54, p < 0.001) without bias between the two methods of assessing muscle mass. This study provides age-, sex-, and BMI-specific reference values for skeletal muscle parameters that will support clinical decision making.</p
Blocking Complement Factor B Activation Reduces Renal Injury and Inflammation in a Rat Brain Death Model
Introduction: The majority of kidneys used for transplantation are retrieved from brain-dead organ donors. In brain death, the irreversible loss of brain functions results in hemodynamic instability, hormonal changes and immunological activation. Recently, brain death has been shown to cause activation of the complement system, which is adversely associated with renal allograft outcome in recipients. Modulation of the complement system in the brain-dead donor might be a promising strategy to improve organ quality before transplantation. This study investigated the effect of an inhibitory antibody against complement factor B on brain death-induced renal inflammation and injury. Method: Brain death was induced in male Fischer rats by inflating a balloon catheter in the epidural space. Anti-factor B (anti-FB) or saline was administered intravenously 20 min before the induction of brain death (n = 8/group). Sham-operated rats served as controls (n = 4). After 4 h of brain death, renal function, renal injury, and inflammation were assessed. Results: Pretreatment with anti-FB resulted in significantly less systemic and local complement activation than in saline-treated rats after brain death. Moreover, anti-FB treatment preserved renal function, reflected by significantly reduced serum creatinine levels compared to saline-treated rats after 4 h of brain death. Furthermore, anti-FB significantly attenuated histological injury, as seen by reduced tubular injury scores, lower renal gene expression levels (>75%) and renal deposition of kidney injury marker-1. In addition, anti-FB treatment significantly prevented renal macrophage influx and reduced systemic IL-6 levels compared to saline-treated rats after brain death. Lastly, renal gene expression of IL-6, MCP-1, and VCAM-1 were significantly reduced in rats treated with anti-FB. Conclusion: This study shows that donor pretreatment with anti-FB preserved renal function, reduced renal damage and inflammation prior to transplantation. Therefore, inhibition of factor B in organ donors might be a promising strategy to reduce brain death-induced renal injury and inflammation.Nephrolog
Guest-Dependence on Spin Crossover and Thermal Expansion in Nanoporous Coordination Framework Materials
Coordination framework materials have attracted much interest in modern chemistry due to the plethora of properties that they may possess. The frameworks described in this thesis demonstrate the properties of spin crossover, anomalous thermal expansion, and nanoporosity, which enables guest-dependent studies into the material behaviour. The first frameworks described are the [Fe(bpac)M(CN)4]•x(bpac){guest} (M = Ni, Pd, Pt; bpac = 1,4-bis(4′-pyridyl)acetylene) family. The properties of the alcohol-solvated [Fe(bpac)Pd(CN)4]•x(bpac) (x = 0.4, 0.5) frameworks were studied, and the major guest influence on the resulting spin crossover behaviour was determined to be due to an internal pressure effect produced by the kinetic volume and compressibility of the guest. By obtaining a variety of EtOH adsorption isotherms and isobars, a Temperature-Pressure phase diagram of SCO was produced for the [Fe(bpac)Pd(CN)4]•0.4(bpac){EtOH} material. In addition to these frameworks, the behaviour of the [Fe(bpac)(Au(CN)2)2)]•{guest} framework material was also investigated. This framework demonstrated unprecedented multifunctional behaviour, with a synergistic interplay between the spin crossover, lattice structure and host–guest properties. The framework lattice was exceptionally flexible, and displayed a facile ‘scissor-type’ motion of the {Fe(Au(CN)2)2} (4,4) grids. Due to the extreme conformational flexibility of the {Fe(Au(CN)2)2} (4,4)-grids of this material, the [Fe(bpac)(Au(CN)2)2)]•{EtOH} sample displayed colossal uniaxial thermal expansion behaviour. Below the spin transition, the a parameter displayed a maximum thermal expansion coefficient of −1070 × 10−6 K−1, which is an order of magnitude greater than any yet reported for this quantity. Guest-dependent studies on this framework demonstrate the strong effect of guest properties on the conformation of the framework lattice and the spin transition behaviour
Placenta-on-a-Chip as an In Vitro Approach to Evaluate the Physiological and Structural Characteristics of the Human Placental Barrier upon Drug Exposure:A Systematic Review
Quantification of fetal drug exposure remains challenging since sampling from the placenta or fetus during pregnancy is too invasive. Currently existing in vivo (e.g., cord blood sampling) and ex vivo (e.g., placenta perfusion) models have inherent limitations. A placenta-on-a-chip model is a promising alternative. A systematic search was performed in PubMed on 2 February 2023, and Embase on 14 March 2023. Studies were included where placenta-on-a-chip was used to investigate placental physiology, placenta in different obstetric conditions, and/or fetal exposure to maternally administered drugs. Seventeen articles were included that used comparable approaches but different microfluidic devices and/or different cultured maternal and fetal cell lines. Of these studies, four quantified glucose transfer, four studies evaluated drug transport, three studies investigated nanoparticles, one study analyzed bacterial infection and five studies investigated preeclampsia. It was demonstrated that placenta-on-a-chip has the capacity to recapitulate the key characteristics of the human placental barrier. We aimed to identify knowledge gaps and provide the first steps towards an overview of current protocols for developing a placenta-on-a-chip, that facilitates comparison of results from different studies. Although models differ, they offer a promising approach for in vitro human placental and fetal drug studies under healthy and pathological conditions.</p
Muscle mass, muscle strength and mortality in kidney transplant recipients:results of the TransplantLines Biobank and Cohort Study
Background: Survival of kidney transplant recipients (KTR) is low compared with the general population. Low muscle mass and muscle strength may contribute to lower survival, but practical measures of muscle status suitable for routine care have not been evaluated for their association with long-term survival and their relation with each other in a large cohort of KTR. Methods: Data of outpatient KTR ≥ 1 year post-transplantation, included in the TransplantLines Biobank and Cohort Study (ClinicalTrials.gov Identifier: NCT03272841), were used. Muscle mass was determined as appendicular skeletal muscle mass indexed for height2 (ASMI) through bio-electrical impedance analysis (BIA), and by 24-h urinary creatinine excretion rate indexed for height2 (CERI). Muscle strength was determined by hand grip strength indexed for height2 (HGSI). Secondary analyses were performed using parameters not indexed for height2. Cox proportional hazards models were used to investigate the associations between muscle mass and muscle strength and all-cause mortality, both in univariable and multivariable models with adjustment for potential confounders, including age, sex, body mass index (BMI), estimated glomerular filtration rate (eGFR) and proteinuria. Results: We included 741 KTR (62% male, age 55 ± 13 years, BMI 27.3 ± 4.6 kg/m2), of which 62 (8%) died during a median [interquartile range] follow-up of 3.0 [2.3–5.7] years. Compared with patients who survived, patients who died had similar ASMI (7.0 ± 1.0 vs. 7.0 ± 1.0 kg/m2; P = 0.57), lower CERI (4.2 ± 1.1 vs. 3.5 ± 0.9 mmol/24 h/m2; P < 0.001) and lower HGSI (12.6 ± 3.3 vs. 10.4 ± 2.8 kg/m2; P < 0.001). We observed no association between ASMI and all-cause mortality (HR 0.93 per SD increase; 95% confidence interval [CI] [0.72, 1.19]; P = 0.54), whereas CERI and HGSI were significantly associated with mortality, independent of potential confounders (HR 0.57 per SD increase; 95% CI [0.44, 0.81]; P = 0.002 and HR 0.47 per SD increase; 95% CI [0.33, 0.68]; P < 0.001, respectively), and associations of CERI and HGSI with mortality remained independent of each other (HR 0.68 per SD increase; 95% CI [0.47, 0.98]; P = 0.04 and HR 0.53 per SD increase; 95% CI [0.36, 0.76]; P = 0.001, respectively). Similar associations were found for unindexed parameters. Conclusions: Higher muscle mass assessed by creatinine excretion rate and higher muscle strength assessed by hand grip strength are complementary in their association with lower risk of all-cause mortality in KTR. Muscle mass assessed by BIA is not associated with mortality. Routine assessment using both 24-h urine samples and hand grip strength is recommended, to potentially target interdisciplinary interventions for KTR at risk for poor survival to improve muscle status.</p
- …