441 research outputs found

    Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation

    Get PDF
    Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation

    Ischemia and reperfusion injury in kidney transplantation : relevant mechanisms in injury and repair

    Get PDF
    Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways

    Renoprotective capacities of non-erythropoietic EPO derivative, ARA290, following renal ischemia/reperfusion injury

    Get PDF
    BACKGROUND: ARA290 is a non-erythropoietic EPO derivative which only binds to the cytoprotective receptor complex (EPOR(2)-βcR(2)) consisting of two EPO-receptors (EPOR) and two β common receptors (βcR). ARA290 is renoprotective in renal ischemia/reperfusion (I/R). In a renal I/R model we focussed on timing of post-reperfusional administration of ARA290. Furthermore, we investigated the anti-inflammatory properties of ARA290. METHODS: Twenty-six male Lewis/HanHsd rats were exposed to unilateral ischemia for 30 minutes, with subsequent removal of the contralateral kidney. Post-reperfusion, ARA290 was administered early (one hour), late (four hours) or repetitive (one and four hours). Saline was used as vehicle treatment. Rats were sacrificed after three days. RESULTS: Early ARA290 treatment improved renal function. Late- or repetitive treatment tended to improve clinical markers. Furthermore, early ARA290 treatment reduced renal inflammation and acute kidney injury at three days post-reperfusion. Late- or repetitive treatment did not affect inflammation or acute kidney injury. CONCLUSIONS: ARA290 attenuated renal ischemia/reperfusion injury. This study showed the anti-inflammatory effect of ARA290 and suggests early administration in the post-reperfusional phase is most effective. ARA290 is a candidate drug for protection against ischemic injury following renal transplantation

    The impact of donor pancreas extraction time on graft survival and postoperative complications in pancreas transplant recipients

    Get PDF
    Background: Simultaneous pancreas kidney transplantation (SPK) is the best therapeutic option for patients with diabetes mellitus type 1 and end-stage renal disease. Recently, donor organ extraction time has been shown to affect kidney and liver graft survival. This study aimed to assess the effect of pancreas donor extraction time on graft survival and postoperative complications. Methods: We retrospectively analyzed all pancreas transplants performed in two Eurotransplant centers. The association of pancreas extraction time with pancreas graft survival was analyzed by a Cox proportional hazards regression analysis after 3 months, 1 and 5 year. Besides, the effect of pancreas extraction time on the incidence of severe postoperative complications was analyzed. Results: A total of 317 pancreas transplants were included in this study. Death-censored pancreas graft survival was 85.7% after one year and 76.7% after five years. Median pancreas donor extraction time was 64 min [IQR: 52-79 min]. After adjustment for potential confounders, death censored graft survival after 30 days (HR 1.01, 95% CI 0.9-1.03 (p = 0.23), 1 year (HR 1.01, 95% CI 0.99-1.03 (p = 0.22) and 5 years (HR 1.00, 95% CI 0.99-1.02 (p = 0.57) was not associated with pancreas donor extraction time. However, extraction time was significantly associated with a higher incidence of Clavien-Dindo >3 complications compared to Clavien-Dindo 1 + 2 complications: OR 1.012, 95% CI 1.00-1.02 (p = 0.039). Conclusions: Our findings suggest that although no effect on graft survival was found, limiting pancreas extraction time can have a significant impact on lowering postoperative complications

    ARA290, a non-erythropoietic EPO derivative, attenuates renal ischemia/reperfusion injury

    Get PDF
    BACKGROUND: In contrast with various pre-clinical studies, recent clinical trials suggest that high dose erythropoietin (EPO) treatment following kidney transplantation does not improve short-term outcome and that it even increases the risk of thrombotic events. ARA290 is a non-erythropoietic EPO derivative and does not increase the risk of cardiovascular events, but potentially has cytoprotective capacities in prevention of renal ischemia/reperfusion injury. METHODS: Eight female Dutch Landrace pigs were exposed to unilateral renal ischemia for 45 minutes with simultaneous cannulation of the ureter of the ischemic kidney. ARA290 or saline was administered by an intravenous injection at 0, 2, 4 and 6 hours post-reperfusion. The animals were sacrificed seven days post-reperfusion. RESULTS: ARA290 increased glomerular filtration rate during the observation period of seven days. Furthermore, ARA290 tended to reduce MCP-1 and IL-6 expression 15 minutes post-reperfusion. Seven days post-reperfusion ARA290 reduced interstitial fibrosis. CONCLUSIONS: The improvement in renal function following renal ischemia/reperfusion and reduced structural damage observed in this study by ARA290 warrants further investigation towards clinical application

    Treating Ischemically Damaged Porcine Kidneys with Human Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stromal Cells During Ex Vivo Normothermic Machine Perfusion

    Get PDF
    Pretransplant normothermic machine perfusion (NMP) of donor kidneys offers the unique opportunity to perform active interventions to an isolated renal graft before transplantation. There is increasing evidence that mesenchymal stromal cells (MSCs) could have a paracrine/endocrine regenerative effect on ischemia-reperfusion injury. The purpose of this study was to determine which cytokines are secreted by MSCs during NMP of a porcine kidney. Viable porcine kidneys and autologous whole blood were obtained from a slaughterhouse. Warm ischemia time was standardized at 20 min and subsequent hypothermic machine perfusion was performed during 2-3 h. Thereafter, kidneys were machine perfused at 37 degrees C during 7 h. After 1 h of NMP, 0, 10(7)cultured human adipose tissue-derived MSCs, or 10(7)cultured bone marrow-derived MSCs were added (n = 5 per group). In a fourth experimental group, 7-h NMP was performed with 10(7)adipose tissue-derived MSCs, without a kidney in the circuit. Kidneys perfused with MSCs showed lower lactate dehydrogenase and neutrophil gelatinase-associated lipocalin levels in comparison with the control group. Also, elevated levels of human hepatocyte growth factor, interleukin (IL)-6, and IL-8 were found in the perfusate of the groups perfused with MSCs compared to the control groups. This study suggests that MSCs, in contact with an injured kidney during NMP, could lead to lower levels of injury markers and induce the release of immunomodulatory cytokines.Nephrolog

    Metformin Preconditioning and Postconditioning to Reduce Ischemia Reperfusion Injury in an IsolatedEx VivoRat and Porcine Kidney Normothermic Machine Perfusion Model

    Get PDF
    Metformin may act renoprotective prior to kidney transplantation by reducing ischemia-reperfusion injury (IRI). This study examined whether metformin preconditioning and postconditioning duringex vivonormothermic machine perfusion (NMP) of rat and porcine kidneys affect IRI. In the rat study, saline or 300 mg/kg metformin was administered orally twice on the day before nephrectomy. After 15 minutes of warm ischemia, kidneys were preserved with static cold storage for 24 hours. Thereafter, 90 minutes of NMP was performed with the addition of saline or metformin (30 or 300 mg/L). In the porcine study, after 30 minutes of warm ischemia, kidneys were preserved for 3 hours with oxygenated hypothermic machine perfusion. Subsequently, increasing doses of metformin were added during 4 hours of NMP. Metformin preconditioning of rat kidneys led to decreased injury perfusate biomarkers and reduced proteinuria. Postconditioning of rat kidneys resulted, dose-dependently, in less tubular cell necrosis and vacuolation. Heat shock protein 70 expression was increased in metformin-treated porcine kidneys. In all studies, creatinine clearance was not affected. In conclusion, both metformin preconditioning and postconditioning can be done safely and improved rat and porcine kidney quality. Because the effects are minor, it is unknown which strategy might result in improved organ quality after transplantation

    Methylprednisolone Treatment in Brain Death-Induced Lung Inflammation-A Dose Comparative Study in Rats

    Get PDF
    Background: The process of brain death (BD) leads to a pro-inflammatory state of the donor lung, which deteriorates its quality. In an attempt to preserve lung quality, methylprednisolone is widely recommended in donor lung management. However, clinical treatment doses vary and the dose-effect relation of methylprednisolone on BD-induced lung inflammation remains unknown. The aim of this study was to investigate the effect of three different doses methylprednisolone on the BD-induced inflammatory response. Methods: BD was induced in rats by inflation of a Fogarty balloon catheter in the epidural space. After 60 min of BD, saline or methylprednisolone (low dose (5 mg/kg), intermediate dose (12.5 mg/kg) or high dose (22.5 mg/kg)) was administered intravenously. The lungs were procured and processed after 4 h of BD. Inflammatory gene expressions were analyzed by RT-qPCR and influx of neutrophils and macrophages were quantified with immunohistochemical staining. Results: Methylprednisolone treatment reduced neutrophil chemotaxis as demonstrated by lower IL-8-like CINC-1 and E-selectin levels, which was most evident in rats treated with intermediate and high doses methylprednisolone. Macrophage chemotaxis was attenuated in all methylprednisolone treated rats, as corroborated by lower MCP-1 levels compared to saline treated rats. Thereby, all doses methylprednisolone reduced TNF-alpha, IL-6 and IL-1 beta tissue levels. In addition, intermediate and high doses methylprednisolone induced a protective anti-inflammatory response, as reflected by upregulated IL-10 expression when compared to saline treated brain-dead rats. Conclusion: We showed that intermediate and high doses methylprednisolone share most potential to target BD-induced lung inflammation in rats. Considering possible side effects of high doses methylprednisolone, we conclude from this study that an intermediate dose of 12.5 mg/kg methylprednisolone is the optimal treatment dose for BD-induced lung inflammation in rats, which reduces the pro-inflammatory state and additionally promotes a protective, anti-inflammatory response

    Effects of Oxygen During Long-term Hypothermic Machine Perfusion in a Porcine Model of Kidney Donation After Circulatory Death

    Get PDF
    International audienceBackground:Hypothermic machine perfusion (HMP) has become standard care in many center’s to preserve kidneys donated after circulatory death (DCD). Despite a significant reduction in metabolism at low temperatures, remaining cellular activity requires oxygen. Since the role and safety of oxygen during HMP has not been fully clarified, its supply during HMP is not standard yet. This study investigates the effect of administering oxygen during HMP on renal function in a porcine DCD model.Methods: After 30 minutes of warm ischemia, porcine slaughterhouse kidneys were preserved for 24 hours by means of cold storage (CS), or HMP with Belzer Machine Perfusion Solution (UW- MPS) supplemented with no oxygen, 21% or 100% oxygen. Next, kidneys were reperfused for 4 hours in a normothermic machine perfusion (NMP) setup.Results:HMP resulted in significantly better kidney function during NMP. Thiobarbituric acid-reactive substances (TBARS), markers of oxidative stress, were significantly lower in HMP preserved kidneys. HMP preserved kidneys showed significantly lower ASAT and LDH levels compared to kidneys preserved by CS. No differences were found between the HMP groups subjected to different oxygen concentrations. ATP levels significantly improved during HMP when active oxygenation was applied.Conclusion:This study showed that preservation of DCD kidneys with HMP is superior to CS. Although the addition of oxygen to HMP did not result in significantly improved renal function, beneficial effects were found in terms of reduced oxidative stress and energy status. Oxygen addition proofed to be safe and did not show detrimental effects

    Placenta-on-a-Chip as an In Vitro Approach to Evaluate the Physiological and Structural Characteristics of the Human Placental Barrier upon Drug Exposure:A Systematic Review

    Get PDF
    Quantification of fetal drug exposure remains challenging since sampling from the placenta or fetus during pregnancy is too invasive. Currently existing in vivo (e.g., cord blood sampling) and ex vivo (e.g., placenta perfusion) models have inherent limitations. A placenta-on-a-chip model is a promising alternative. A systematic search was performed in PubMed on 2 February 2023, and Embase on 14 March 2023. Studies were included where placenta-on-a-chip was used to investigate placental physiology, placenta in different obstetric conditions, and/or fetal exposure to maternally administered drugs. Seventeen articles were included that used comparable approaches but different microfluidic devices and/or different cultured maternal and fetal cell lines. Of these studies, four quantified glucose transfer, four studies evaluated drug transport, three studies investigated nanoparticles, one study analyzed bacterial infection and five studies investigated preeclampsia. It was demonstrated that placenta-on-a-chip has the capacity to recapitulate the key characteristics of the human placental barrier. We aimed to identify knowledge gaps and provide the first steps towards an overview of current protocols for developing a placenta-on-a-chip, that facilitates comparison of results from different studies. Although models differ, they offer a promising approach for in vitro human placental and fetal drug studies under healthy and pathological conditions.</p
    • …
    corecore