9 research outputs found

    γ9δ2T cell diversity and the receptor interface with tumor cells

    No full text
    γ9δ2T cells play a major role in cancer immune surveillance, yet the clinical translation of their in vitro promise remains challenging. To address limitations of previous clinical attempts utilizing expanded γ9δ2T cells, we explored the clonal diversity of γ9δ2T cell repertoires and characterized their target. We demonstrated that only a fraction of expanded γ9δ2T cells is active against cancer cells, and that activity of the parental clone, or functional avidity of selected γ9δ2TCRs does not associate with clonal frequency. We also analyzed the target-receptor-interface and provided a two-receptor, three-ligand model. Activation is initiated by binding of the γ9δ2TCR to BTN2A1 through the regions between CDR2 and CDR3 of the TCR γ chain, and modulated by the affinity of the CDR3 region of the TCR δ chain, which is phosphoantigen (pAg)-independent and does not depend on CD277. CD277 is secondary, serving as mandatory co-activating ligand. Binding of CD277 to its putative ligand does not depend on the presence of γ9δ2TCR, does depend on usage of the intracellular CD277, creates pAg-dependent proximity to BTN2A1, enhances cell-cell conjugate formation and stabilizes the immunological synapse. This process critically depends on the affinity of the γ9δ2TCR and requires membrane flexibility of the γ9δ2TCR and CD277, facilitating their polarization and high-density recruitment during immunological synapse formation

    Intravenous immune globulin suppresses angiogenesis in mice and humans

    No full text
    Human intravenous immune globulin (IVIg), a purified IgG fraction composed of ~ 60% IgG1 and obtained from the pooled plasma of thousands of donors, is clinically used for a wide range of diseases. The biological actions of IVIg are incompletely understood and have been attributed both to the polyclonal antibodies therein and also to their IgG (IgG) Fc regions. Recently, we demonstrated that multiple therapeutic human IgG1 antibodies suppress angiogenesis in a target-independent manner via FcγRI, a high-affinity receptor for IgG1. Here we show that IVIg possesses similar anti-angiogenic activity and inhibited blood vessel growth in five different mouse models of prevalent human diseases, namely, neovascular age-related macular degeneration, corneal neovascularization, colorectal cancer, fibrosarcoma and peripheral arterial ischemic disease. Angioinhibition was mediated by the Fc region of IVIg, required FcγRI and had similar potency in transgenic mice expressing human FcγRs. Finally, IVIg therapy administered to humans for the treatment of inflammatory or autoimmune diseases reduced kidney and muscle blood vessel densities. These data place IVIg, an agent approved by the US Food and Drug Administration, as a novel angioinhibitory drug in doses that are currently administered in the clinical setting. In addition, they raise the possibility of an unintended effect of IVIg on blood vessels

    Intravenous immune globulin suppresses angiogenesis in mice and humans

    No full text
    Human intravenous immune globulin (IVIg), a purified IgG fraction composed of ~ 60% IgG1 and obtained from the pooled plasma of thousands of donors, is clinically used for a wide range of diseases. The biological actions of IVIg are incompletely understood and have been attributed both to the polyclonal antibodies therein and also to their IgG (IgG) Fc regions. Recently, we demonstrated that multiple therapeutic human IgG1 antibodies suppress angiogenesis in a target-independent manner via FcγRI, a high-affinity receptor for IgG1. Here we show that IVIg possesses similar anti-angiogenic activity and inhibited blood vessel growth in five different mouse models of prevalent human diseases, namely, neovascular age-related macular degeneration, corneal neovascularization, colorectal cancer, fibrosarcoma and peripheral arterial ischemic disease. Angioinhibition was mediated by the Fc region of IVIg, required FcγRI and had similar potency in transgenic mice expressing human FcγRs. Finally, IVIg therapy administered to humans for the treatment of inflammatory or autoimmune diseases reduced kidney and muscle blood vessel densities. These data place IVIg, an agent approved by the US Food and Drug Administration, as a novel angioinhibitory drug in doses that are currently administered in the clinical setting. In addition, they raise the possibility of an unintended effect of IVIg on blood vessels

    Human IgG1 antibodies suppress angiogenesis in a target-independent manner

    Get PDF
    Aberrant angiogenesis is implicated in diseases affecting nearly 10% of the world's population. The most widely used anti-angiogenic drug is bevacizumab, a humanized IgG1 monoclonal antibody that targets human VEGFA. Although bevacizumab does not recognize mouse Vegfa, it inhibits angiogenesis in mice. Here we show bevacizumab suppressed angiogenesis in three mouse models not via Vegfa blockade but rather Fc-mediated signaling through FcγRI (CD64) and c-Cbl, impairing macrophage migration. Other approved humanized or human IgG1 antibodies without mouse targets (adalimumab, alemtuzumab, ofatumumab, omalizumab, palivizumab and tocilizumab), mouse IgG2a, and overexpression of human IgG1-Fc or mouse IgG2a-Fc, also inhibited angiogenesis in wild-type and FcγR humanized mice. This anti-angiogenic effect was abolished by Fcgr1 ablation or knockdown, Fc cleavage, IgG-Fc inhibition, disruption of Fc-FcγR interaction, or elimination of FcRγ-initated signaling. Furthermore, bevacizumab's Fc region potentiated its anti-angiogenic activity in humanized VEGFA mice. Finally, mice deficient in FcγRI exhibited increased developmental and pathological angiogenesis. These findings reveal an unexpected anti-angiogenic function for FcγRI and a potentially concerning off-target effect of hIgG1 therapies
    corecore