547 research outputs found

    Checking Computations of Formal Method Tools - A Secondary Toolchain for ProB

    Full text link
    We present the implementation of pyB, a predicate - and expression - checker for the B language. The tool is to be used for a secondary tool chain for data validation and data generation, with ProB being used in the primary tool chain. Indeed, pyB is an independent cleanroom-implementation which is used to double-check solutions generated by ProB, an animator and model-checker for B specifications. One of the major goals is to use ProB together with pyB to generate reliable outputs for high-integrity safety critical applications. Although pyB is still work in progress, the ProB/pyB toolchain has already been successfully tested on various industrial B machines and data validation tasks.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    A Polyvariant Binding-Time Analysis for Off-line Partial Deduction

    Full text link
    We study the notion of binding-time analysis for logic programs. We formalise the unfolding aspect of an on-line partial deduction system as a Prolog program. Using abstract interpretation, we collect information about the run-time behaviour of the program. We use this information to make the control decisions about the unfolding at analysis time and to turn the on-line system into an off-line system. We report on some initial experiments.Comment: 19 pages (including appendix) Paper (without appendix) appeared in Programming Languages and Systems, Proceedings of the European Symposium on Programming (ESOP'98), Part of ETAPS'98 (Chris Hankin, eds.), LNCS, vol. 1381, 1998, pp. 27-4

    Who watches the watchers: Validating the ProB Validation Tool

    Full text link
    Over the years, ProB has moved from a tool that complemented proving, to a development environment that is now sometimes used instead of proving for applications, such as exhaustive model checking or data validation. This has led to much more stringent requirements on the integrity of ProB. In this paper we present a summary of our validation efforts for ProB, in particular within the context of the norm EN 50128 and safety critical applications in the railway domain.Comment: In Proceedings F-IDE 2014, arXiv:1404.578

    Efficient local unfolding with ancestor stacks

    Get PDF
    The most successful unfolding rules used nowadays in the partial evaluation of logic programs are based on well quasi orders (wqo) applied over (covering) ancestors, i.e., a subsequence of the atoms selected during a derivation. Ancestor (sub)sequences are used to increase the specialization power of unfolding while still guaranteeing termination and also to reduce the number of atoms for which the wqo has to be checked. Unfortunately, maintaining the structure of the ancestor relation during unfolding introduces significant overhead. We propose an efficient, practical local unfolding rule based on the notion of covering ancestors which can be used in combination with a wqo and allows a stack-based implementation without losing any opportunities for specialization. Using our technique, certain non-leftmost unfoldings are allowed as long as local unfolding is performed, i.e., we cover depth-first strategies. To deal with practical programs, we propose assertion-based techniques which allow our approach to treat programs that include (Prolog) built-ins and external predicates in a very extensible manner, for the case of leftmost unfolding. Finally, we report on our mplementation of these techniques embedded in a practical partial evaluator, which shows that our techniques, in addition to dealing with practical programs, are also significantly more efficient in time and somewhat more efficient in memory than traditional tree-based implementations. To appear in Theory and Practice of Logic Programming (TPLP)

    Supervising Offline Partial Evaluation of Logic Programs using Online Techniques

    No full text
    A major impediment for more widespread use of offline partial evaluation is the difficulty of obtaining and maintaining annotations for larger, realistic programs. Existing automatic binding-time analyses still only have limited applicability and annotations often have to be created or improved and maintained by hand, leading to errors. We present a technique to help overcome this problem by using online control techniques which supervise the specialisation process in order to help the development and maintenance of correct annotations by identifying errors. We discuss an implementation in the Logen system and show on a series of examples that this approach is effective: very few false alarms were raised while infinite loops were detected quickly. We also present the integration of this technique into a web interface, which highlights problematic annotations directly in the source code. A method to automatically fix incorrect annotations is presented, allowing the approach to be also used as a pragmatic binding time analysis. Finally we show how our method can be used for efficiently locating built-in errors in Prolog source code
    corecore