
Efficient Local Unfolding with Ancestor Stacks

GERMÁN PUEBLA1

ELVIRA ALBERT2

MANUEL HERMENEGILDO1'3

1 School of Computer Science, Technical University of Madrid
E28660-Boadilla del Monte, Madrid, Spain. E-mail: german@fi.upm.es, herme@fi.upm.es

2 School of Computer Science, Complutense University of Madrid
E280JfO-Profesor José García Santesmases, s/n, Madrid, Spain. E-mail: elvira@sip.ucm.es

3 Madrid Institute for Advanced Studies in Software Development Technology,
IMDEA Software. E-mail: manuel .hermenegildo@imdea.org

submitted 25 October 2005; revised 3 March 2006; accepted XXXX

A b s t r a c t

The most successful unfolding rules used nowadays in the partial evaluation of logic pro
grams are based on well quasi orders (wqo) applied over (covering) ancestors, i.e., a sub-
sequence of the atoms selected during a derivation. Ancestor (sub)sequences are used to
increase the specialization power of unfolding while still guaranteeing termination and
also to reduce the number of atoms for which the wqo has to be checked. Unfortunately,
maintaining the structure of the ancestor relation during unfolding introduces significant
overhead. We propose an efficient, practical local unfolding rule based on the notion of
covering ancestors which can be used in combination with a wqo and allows a stack-based
implementation without losing any opportunities for specialization. Using our technique,
certain non-leftmost unfoldings are allowed as long as local unfolding is performed, i.e., we
cover depth-first strategies. To deal with practical programs, we propose assertion-based
techniques which allow our approach to treat programs that include (Prolog) built-ins
and external predicates in a very extensible manner, for the case of leftmost unfolding.
Finally, we report on our implementation of these techniques embedded in a practical
partial evaluator, which shows that our techniques, in addition to dealing with practi
cal programs, are also significantly more efficient in time and somewhat more efficient in
memory than traditional tree-based implementations. To appear in Theory and Practice
of Logic Programming (TPLP).

KEYWORDS: Partial Evaluation, Partial Deduction, Logic Programming, Prolog, SLD
semantics, Local Unfolding.

1 I n t r o d u c t i o n

The main purpose of partial evaluation (see (Jones et al. 1993) for a general text

on the área) is to specialize a given program w.r.t. par t of its input data—henee

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148662682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:german@fi.upm.es
mailto:herme@fi.upm.es
mailto:elvira@sip.ucm.es
mailto:hermenegildo@imdea.org

it is also known as program specialization. Essentially, partial evaluators are non-
standard interpreters which evalúate expressions while enough information is avail-
able and residualize them otherwise. The partial evaluation of logic programs is
usually known as partial deduction (Lloyd and Shepherdson 1991; Gallagher 1993).
Informally the partial deduction algorithm proceeds as follows. Given an input pro
gram and a set of atoms, the ñrst step consists in applying an unfolding rule to
compute ñnite (possibly incomplete) SLD trees for these atoms. This step returns
a set of resultarás (or residual rules), i.e., a program, associated to the root-to-leaf
derivations of these trees. Then, an abstraction operator is applied to properly add
the atoms in the bodies of resultants to the set of atoms to be partially evaluated.
The abstraction phase yields a new set of atoms, some of which may in turn need
further evaluation and, thus, the process is iteratively repeated while new atoms
are introduced. The number of such new atoms which can be introduced can in
general be unbounded. The termination of the partial deduction process is ensured
by two control issues. Following the terminology of (Gallagher 1993), the so-called
local control defines an unfolding rule which determines how to construct finite
SLD trees. The global control defines an abstraction operator which guarantees
that the number of new atoms is kept finite. Termination of the partial deduction
algorithm involves ensuring termination both at the local and global levéis. We
refer to (Leuschel and Bruynooghe 2002) for a survey on both control issues. This
article is centered on the local control, namely on the development of a practical,
efficient unfolding rule. The techniques we will propose for local control can be used
in combination with any global control strategy.

We believe that two factors limiting the general uptake of partial deduction are:
1) the relative inefficiency of the partial deduction method, and 2) the complications
brought about by the treatment of real programs. Indeed, the integration of powerful
strategies in the unfolding rule —like the use of wqos combined with the ancestor
relation— can introduce a signiñcant cost both in time and memory consumption of
the specialization process. Regarding the treatment of real programs which include
external predicates, non-declarative features, etc., the complications range from
how to identify which predicates include these non-declarative features (ad-hoc but
difficult to maintain tables are often used in practice for this purpose) to how to
deal with such predicates during partial deduction. Also, the optimal treatment
of these predicates during partial deduction often requires information which can
only be available at partial deduction time if a global analysis of the program is
performed. Our main objective in this work is to propose some novel solutions to
these issues.

State-of-the-art partial evaluators intégrate terminating unfolding rules for local
control based on wqos, like homeomorphic embedding (Kruskal 1960; Leuschel and Bruynooghe 2002)
which can obtain very powerful optimizations. Moreover, they allow performing the
ordering comparisons over subsequences of the full sequence of the selected atoms.
In particular, the use of ancestors for refining sequences of visited atoms, originally
proposed in (Bruynooghe et al. 1992), greatly improves the specialization power of
unfolding while still guaranteeing termination and also reduces the length of the
sequences for which the embedding order for the new atoms has to be checked. Un-

fortunately, having to maintain dependency information for the individual atoms
in each derivation during the generation of SLD trees has turned out to introduce
overheads which seem to cancel out the theoretical efficiency gains expected. In
order to address this issue, in this article, we introduce ASLD resolutíon as the ba-
sis for an efficient, stack-based implementation technique of a local unfolding rule
relying on the notion of covering ancestors. Our technique can signiñcantly reduce
the overhead incurred by the use of covering ancestors without losing any oppor-
tunities for specialization. We outline as well a generalization that allows certain
non-leftmost unfoldings with the same assurances.

In order to deal with real programs that include (Prolog) built-ins and ex-
ternal predicates, we extend ASLD resolution and the ancestor-based local un
folding rule to handle these predicates by relying on assertion-based techniques
(Puebla et al. 2000). The use of assertions provides extensíbílíty in the sense that
users and developers of partial evaluators can deal with new external predicates
during partial evaluation by just adding the proper assertions to these predicates
—without having to maintain ad-hoc tables or modifying the partial evaluator it-
self. We report on an implementation of our technique in a practical, state-of-the-
art partial evaluator, embedded in a production compiler which uses assertions and
global analysis extensively (the Ciao compiler (Bueno et al. 2004) and, speciñcally,
its preprocessor CiaoPP (Hermenegildo et al. 2005)). We believe that our experi
mental results provide evidence that our technique pays off in practice and can
thus contribute to the practicality of state-of-the-art partial evaluation techniques.

An important observation is that the techniques that we propose in this article to
control the unfolding process are useful in the context of onlíne partial evaluation.
Traditionally, two approaches to partial evaluation have been considered, onlíne and
offlíne partial evaluation (see (Leuschel et al. 2004; Leuschel and Bruynooghe 2002))
In online partial evaluation all control decisions are taken on the fly during the spe
cialization phase, by keeping track of the specialization history (e.g., the ancestor
subsequences). In the omine approach, all control decisions are taken before the spe
cialization phase proper. These control decisions are based on abstract descriptions
of the data instead of the actual data. The control strategy is usually represented
as program annotations which are the solé decisión criteria for control of the partial
evaluator. For instance, regarding local control, an annotation can explicitly indi-
cate that an atom should not be unfolded. Regarding global control, annotations
typically specify for each cali which arguments have to be generalised away (Le.,
replaced by variables). Such annotations are generated automatically in some par
tial evaluators by a bíndíng-tíme analysis (Craig et al. 2004), while in other partial
evaluators they are manually provided by the user, either in part or in fu.ll. The ad-
vantages of the omine approach are that, once all control annotations are available,
partial evaluation is quite simple and efficient. On the other hand, online partial
evaluation while usually less efficient, it tends to have more powerful control strat
egy since control decisions are based on actual data instead of abstract descriptions
of data. In principie, one could argüe that both approaches are equally powerful
(see (Christensen and Glück 2004)) and that the omine approach can be more ap-
propriate if the output of a global program analysis is available, while online partial

http://fu.ll

evaluators usually only consider local, runtime information. In this work, we are

interested in proposing novel techniques which help improve the efficiency of online

partial evaluation.

The structure of the article is as follows. Section 2 presents some required back-

ground on local control during partial deduction. Section 3 shows by means of an

example why using ancestors is needed. Section 4 presents ASLD resolution as the

basis for an efficient unfolding rule based on ancestors which allows a stack-based

implementation. Section 5 extends the unfolding techniques to the case of exter-

nal predicates. Section 6 presents some experimental results which compare the

performance of different unfolding strategies with several implementations. Finally,

Section 7 discusses some related work and concludes.

2 B a c k g r o u n d

We assume some basic knowledge on the terminology of logic programming. See for

example (Lloyd 1987) for details.

Very briefly, an atom A is a syntactic construction of the form p(t\,... ,tn),

where p/n, with n > 0, is a predicate symbol and t i , . . . , tn are terms. The function

pred applied to a tom A, i.e., pred(A), returns the predicate symbol p/n for A. A

clause is of the form H <— B where its head H is an a tom and its body B is a

conjunction of atoms. A definite program is a ñnite set of clauses. A goal (or query)

is a conjunction of atoms.

We denote by {Xi i—> t\,...,Xn i—> tn} the substitution a with <r(X¿) = t¿

for i = 1 , . . . ,n (with X¿ ^ Xj if i ^ j), and cr(X) = X for all other variables

X. Given an a tom A, 6(A) denotes the apphcation of substi tution 0 to A. Given

two substitutions 0\ and #2, we denote by 9182 their composition. The identity

substi tution is denoted by id.

A term t' is an instance of t if there is a substi tution a with t' = cr(t).

2.1 Basics of partial deduction

The concept of computation rule is used to select an a tom within a goal for its

evaluation.

Definition 1 {computation rule)

A computation rule is a function 72 from goals to atoms. Let G be a goal of the

form <— Ai,..., AR, ... ,AJ~, k > 1. If TZ(G) =AR we say tha t AR is the selected

atom in G.

The operational semantics of deñnite programs is based on derivations.

Definition 2 (derivation step)
Let G be <— A\,..., AR, ..., Ak- Let 72. be a computation rule and let 1Z(G) =AR.

Let C = H <— B\,..., Bm be a renamed apar t clause in P. Then G' is derived from

G and C via 72. if the following conditions hold:

0 = mgu(AR, H)

G' is the goal <- 6{Bi,..., Bm, Ai,..., AR-Í, A R + 1 , ..., Ak)

The deñnition above differs from s tandard formulations (such as tha t in (Lloyd 1987))

in tha t the atoms newly introduced in G' are not placed in the same position where

the selected a tom AR used to be, but rather they are placed to the left of any

atom in G. For deñnite programs, this is correct since goals are conjunctions, which

enjoy the commutative property. This modiñcation will become instrumental to the

operational semantics we propose in forthcoming sections. This is not true though

for programs with extra logical predicates, as we will discuss in Section 5. Also,

it is well-known tha t changing the atom's positions might not preserve ñnite fail-

ure. Although our general notion of resolution allows reordering the atoms, in a

practical system, we can allow only leftmost unfolding and still obtain signiñcant

improvements (as will be explained in Section 5).

As customary, given a program P and a goal G, an SLD derívatíon for P U {G}

consists of a possibly infinite sequence G = Go, G\, G2, • • • of goals, a sequence

Ci , C 2 , . . . of properly renamed apar t clauses of P, and a sequence of computed an

swer substítutíons 61,62,... (or mgus) such tha t each G¿+ i is derived from G¿

and Gj_|_i using 0¿+i. If G¿ is of the form <— Ai,..., AR, ..., Aj. and G¿+ i =

6{B\,..., Bm, Ai,..., AR-I, AR+I, ..., Ak) is derived from G¿ (as s tated in Def-

inition 2), we say tha t each atom 6 (Ai) with i = Í,...,R — Í,R+Í,...,kis the

ínstance orígínatíng from Ai. Finally, we say tha t the SLD derivation is composed

of the subsequent goals Go, G\, G2, • • ••

A derivation step can be non-deterministic when AR unifies with several clauses in

P, giving rise to several possible SLD derivations for a given goal. Such SLD deriva-

tions can be organized in SLD trees. A finite derivation G = Go, G\, G2, • • •, Gn is

called successful if Gn is empty. In tha t case 6 = 6162 ... 6n is called the computed

answer for goal G. Such a derivation is called failed if it is not possible to perform

a derivation step with Gn.

In order to compute a partial deduction (Lloyd and Shepherdson 1991), given an

input program and a set of atoms, the first step consists in applying an unfolding

rule to compute finite (possibly incomplete) SLD trees for these atoms. Then, a set

of resultants or residual rules are systematically extracted from the SLD trees.1

Definition 3 (unfolding rule)

Given an a tom A, an unfolding rule computes a set of finite SLD derivations

Di,..., Dn (i.e., a possibly incomplete SLD tree) of the form Di = A,... ,Gi with

(a composed) computed answer substi tution 6i for i = 1 , . . . ,n whose associated

resultants are 6i(A) •*— G¿.

A partial evaluation for the initial a tom is then defined as the set of resultants,

i.e., a program, associated to the root-to-leaf derivations for the computed SLD

tree. The partial evaluation for a set of atoms is defined as the unión of the partial

evaluations for each atom in the set. We refer to (Leuschel and Bruynooghe 2002)

for details.

1 Let us note that the definition of a partial deduction algorithw, requires, in addition to an
unfolding rule, the so-called global control level (see Section 1).

2.2 Termination of local control

In order to ensure the local termination oí the partial deduction algorithm while pro-

ducing useíul specializations, the uníolding rule must incorpórate some non-trivial

mechanism to stop the construction oí SLD trees. Nowadays, well-quasi orderings

(wqo) (S0rensen and Glück 1995; Leuschel 1998) are broadly used in the context

of on-line partial evaluation techniques.

It is well known tha t the use of wqos allows the deñnition of admíssíble sequences

which are always ñnite. Intuitively, a sequence of elements si, S2, • • • in S is called

admíssíble wíth résped to an order <s (Bruynooghe et al. 1992) iff there are no

i < j such tha t SÍ <s Sj. The next deñnition captures this idea.

Definition 4 (admissible -wqo)

Let (Ai,..., An) be a sequence of atoms and A be a new atom to be added to the

sequence. Let <s be a wqo. We denote by Admissible(A, (Ai,..., An), <s), with

n > 0 the t ru th valué of the expression VA¿, i £ {l,... ,n} : A ~¿s Ai.

Given a derivation Gi, G<i, • • •, Gn+i in order to decide whether to evalúate Gn+i

or not, we check tha t the selected a tom in Gn+i is not strictly greater or equal to

any previous comparable selected a tom (Leuschel 2002b). Observe tha t the ances-

tor test is only applied on comparable atoms, i.e., ancestor atoms with the same

predicate symbol. This corresponds to the original notion of covering ancestors

(Bruynooghe et al. 1992). Note tha t Ai,..., An in the above deñnition refer to the

selected atoms in Gi,..., Gn and A refers to the selected a tom in Gn+i.

Among the wqo, the homeomorphíc embedding ordering (Kruskal 1960) has proved

to be very powerful in practice. We recall the deñnition of homeomorphic embed

ding, which can be found for instance in Leuschel's work (Leuschel 1998).

Definition 5 (<)

Given two atoms A = p(ti,..., tn) and B = p(si,..., sn), we say tha t B embeds

A, writ ten A <¡ B, if t¿ <¡ s¿ for all i s.t. 1 < i < n. The embedding relation over

terms, also written <¡, is deñned by the following rules:

1. Y < X for all variables X, Y.

2- «<! f(ti, • • • ,tn) if s < U for some i.

3. f(si, ...,sn)< / (t i , . . . ,tn) if SÍ < U for a l l í , 1 < i < n.

Informally, a tom t i embeds a tom Í2 if ¿2 can be obtained from t i by deleting

some operators, e.g., f (g(A, B),h(C, s(D)) embeds f (A, h(C,D)).

2.3 Covering ancestors

State-of-the-art unfolding rules allow performing ordering comparisons over sub-

sequences of the full sequence of the selected atoms of a derivation by organizing

atoms in a proof tree (Bruynooghe 1991), achieving further specialization in many

cases while still guaranteeing termination. To do so, they maintain dependencies

over the selected atoms which are chosen in such a way tha t only a subsequence

of such selected atoms needs to be considered. The essence of the most advanced

techniques is based on the notion of covering ancestors (Bruynooghe et al. 1992).

p a r t i t i o n ([] , _ , [] , []) .
q s o r t ([] R R) p a r t i t i o n ([E|R] ,C, [ElLeftl] ,Right) :-

qsort([X|L],R,R2) : - E = < C '
p a r t i t i on (L) X) Ll) L2) , pa r t i t i on (R ,C ,Le f t l ,R igh t) .

q s o r t a 2 . R l . R 2) , p a r t i t i o n ([E|R] ,C,Left , [E| Rightl]) :

qsor t (Ll .R, [X|R1]).

Fig. 1. A quick-sort program

E > C,
pa r t i t i on (R ,C ,Le f t ,R igh t l) .

Definition 6 {ancestor relation)

Given a derivation step and AR, BÍ, i = 1 , . . . , m as in Deñnition 2, we say tha t AR

is the parent of the instance of B¿, i = 1 , . . . , m, in the goal and in each subsequent

goal where the instance originating from B¿ appears. The ancestor relation is the

transitive closure of the parent relation.

The important observation is tha t a derivation can contain selected subgoals which

are indeed part of a different branch in the proof tree.

Given an a tom A and a derivation D, we denote by Ancestors(A, D) the sequence

of (comparable) ancestors of A in D as deñned in Deñnition 6. It captures the

dependency relation implicit within a proof tree.

It has been proved (Bruynooghe et al. 1992) tha t any infinite derivation must

have at least one inadmissible coveríng ancestor sequence, i.e., a subsequence of the

atoms selected during a derivation. Therefore, it is sufficient to check the selected

ordering relation <s over the covering ancestor subsequences in order to detect

inadmissible derivations.

Definition 7 (safe step)

An SLD step is safe with respect to a wqo if the covering ancestor sequence of the

selected a tom is admissible with respect to tha t order.

The above definition is extended to derivations as follows.

Definition 8 (safe derivation)

An SLD derivation is safe with respect to a wqo if all covering ancestor sequences

of the selected atoms are admissible with respect to tha t order.

Otherwise, the SLD derivation is considered unsafe.

3 T h e Use fu lnes s of A n c e s t o r s

We now illustrate some of the ideas discussed so far and, specially, the relevance

of ancestor tracking, through an example. Our running example is the program

in Figure 1, which implements the well known quick-sort algorithm, "qsort", us-

ing difference lists. Given an initial a tom of the form qsor t (Lis t ,Result ,Cont),

where List is a list of numbers, the algorithm returns in Result a sorted difference

list which is a permutat ion of List and such tha t its continuation is Cont. For exam

ple, for the query q s o r t ([1 , 1 , 1] ,L, []) , the program should compute L=[l , 1 , 1] ,

constructing a finite SLD tree. Notice that , in general, if the input arguments to a

http://qsorta2.Rl.R2

l.qs([i,i,i],R,0) { }

Y

2 . p ([l , l] , l , L l , L 2) { 1 } , 3 . q s (L 2 , R l , 0) { 1 } , 4 . q s (L l , R , [1|R1]){1}

|{L1^[1|L]}

5.1 = < l { 1 ' 2 } , 6 . p g i U , L , L2) { 1 '2 } , 3.qs(L2, Rl, Q) {1} , 4.qs([l |L], R, [l |Rl]) { 1 }

í
i i í l . 2}

6. p ([l] , l , L , L 2) { 1 '2 } , 3.qs(L2, Rl, D) { 1 } , 4.qs([l |L], R, [l |Rl]) { 1 }

|{LM[1|L']}

7.1=<1_{1'2'6} , 8.p(Q, 1,1/, L2){1'2'6> , 3.qs(L2, Rl, Q) {1} , 4 .qs([l , l |L'], R, [l |Rl]) { 1 }

Y
8.p(Q,l , l / ,L2) { 1 ' 2 ' 6>, 3.qs(L2, Rl, Q) {1} , 4 .qs([l , l|L'], R, [l |Rl]) { 1 }

| {L '^ [] ,L2^[]}

3.qs(0 ,Rl ,Q){ 1 >,4 .qs([l , l] ,R, [l |Rl]){ 1 >

| { R l ' ^ [] }

4 .qs ([l , l] ,R , [l])^>

Y
{ 1 ' 4 } , 1 0 . q s (L 2 ' , R l , , [l]) { 1 ' 4 } , l l . q s (L l , , R , [l | R l ,]) { 1 ' 4 } p ([l] , l , L l ' , L 2 ')

Fig. 2. Derivation with Ancestor Annotations

program are not sufficiently instantiated, the corresponding SLD tree can be infinite
and/or contain incomplete derivations.

Consider now Figure 2, which presents an incomplete SLD derivation for our
quick-sort program and the query qsort ([1 ,1 ,1] ,R, []) using a leftmost unfold-
ing rule. For conciseness, predicates qsort and part i t ion are abbreviated as qs
and p, respectively in the figure. Note that each atom is labeled with a number (an
identifier) for future reference2 and a superscript which contains the list of ances-
tors of that atom. Let us assume that we use the homeomorphic embedding order
(Leuschel 1998) as wqo. If we check admissibility w.r.t. the full sequence of atoms,
i.e., we do not use the ancestor relation, the derivation will stop when atom number
9, i.e., p([l], 1, L', L2'), is found for the second time. The reason is that this atom is
greater or equal to the atom number 6 which was selected in the third step, indeed,
they are equal modulo renaming.3

This unfolding rule is too conservative, since the process can proceed further
without risking termination (in fact, the SLD tree for a leftmost computation rule
for the example query is finite and thus the query can safely be fully unfolded).
The crucial point is that the execution of atom number 9 does not depend on atom

2 By abuse of notation, we keep the same number for each atom throughout the derivation
although it may be further instantiated (and thus modifled) in subsequent steps. This will
become useful for continuing the example later.

3 Let us note that the two calis to the builtin predícate =< which appear in the derivation can be
executed since the arguments are properly instantiated. However, they have not been considered
in the admissibility test since these calis do not endanger the termination of the derivation, as
we will discuss in Section 5.

10 11

number 6 (and, actually, the unfolding of 6 has been already completed when atom
number 9 is being considered for unfolding). In order to illustrate this, consider
Figure 3 which shows the proof tree associated to this derivation. Nodes are labeled
with the numbers assigned to each atom, instead of the atoms themselves. Note that,
in order to decide whether or not to evalúate atom number 9, it is only necessary
to check that it is not greater or equal to atoms 4 and 1, Le., than those which are
its ancestors in the proof tree. On the other hand, and as we saw before, if the full
derivation is considered instead, as in Figure 2, atom 9 will be compared also with
atom 6 concluding imprecisely that the derivation may not be safe.

Despite their obvious relevance, unfortunately the practical applicability of un
folding rules based on the notion of covering ancestor is threatened by the overhead
introduced by the implementation of this notion. A naive implementation of the
notion of ancestor keeps —for each atom— the list of its ancestors, as it is de-
picted in Figure 2 by using superscripts. This implementation is relatively efficient
in time but presents a high overhead in memory consumption. Our experiments
show that the partial evaluator can run out of memory even for simple examples.
A more reasonable implementation maintains the proof tree as a global structure.
In a symbolic language, this greatly reduces memory consumption but the cost of
traversing the tree for retrieving the ancestors of each atom introduces a signifi-
cant slowdown in the partial evaluation process. We argüe that our implementation
technique is efficient in time and space, overcoming the above limitations.

4 An Efficient Implementation for Local Unfolding

In this section, we ñrst define the notion of local computation rule. We then intro
duce ASLD resolution, a modification of SLD which incorporates ancestor stacks
and which is the basis of our efficient implementation. Interestingly, we then impose
the local condition to the computation rule in order to ensure accurate results for
ASLD resolution.

4-1 A local computation rule

Our definition of local unfolding is based on the notion of ancestor depth.

Definition 9 {ancestor depth)

Given an SLD derivation D = GQ, • • •, Gm with Gm =<— Ai,..., Ak, k > 1, the
ancestor depth of Ai for i = l,... ,k, denoted depth(Ai, D) is the cardinality of the
ancestor relation for Ai in D.

Intuitively, the ancestor depth of an atom in a goal is the depth at which this atom
is located in the proof tree associated to the derivation.

Definition 10 (local computation rule)
A computation rule 1Z is local if \/D = GQ, ..., Gn such that G¿ =<— An,..., Aimí

for i = 0,.., n, it holds that depth(1Z(Gi), D) > depth(Aij, D) \/j = 1 , . . . , m¿.

Intuitively, a computation rule is local if it always selects one of the atoms which
is deepest in the proof tree for the derivation. As a result, local computation rules
traverse proof trees in a depth-ñrst fashion, though not necessarily left to right ñor in
any other ñxed order. Thus, in principie, in order to implement a local computation
rule we need to record (part of) the derivation history (i.e., its proof tree). Note
that the computation rule used in most implementations of logic programming
languages, such as Prolog, always selects the leftmost atom. This computation rule,
often referred to as leftmost computation rule, is clearly a local computation rule.
Selecting the leftmost atom in all goals guarantees that the selected atom is of
maximal depth within the proof tree as it is traversed in a depth-ñrst fashion —
without the need of storing any history about the derivation.

It is interesting to note that we can allow more flexible computation rules which
are not necessarily local while still ensuring termination at the cost of no accuracy
assurance. A more detailed discussion on this will appear at the end of Section 4.3.

An instrumental observation in our approach is that the proof trees which are
used in order to capture the ancestor relation can be seen as (a simpliñed versión
of) the actívatíon trees (Aho et al. 1986) used in compiler theory for representing
program executions, by simply regarding selected atoms as procedure calis. The
nodes in such activation trees are actívatíon records, which contain information
about local variables, the current program counter, the return address, etc. of the
corresponding cali. Nested subprogram calis result in children activation records. In
the vast majority of programming languages, execution of a program corresponds to
traversing activation trees in a depth-ñrst fashion. Therefore, for efficiency, rather
than maintaining the whole activation tree in memory, run-time systems for execu
tion of such programming languages feature a cali stack where activation records
are stored. This cali stack contains exactly the sequence of activation records which
are active at any point in time during the execution. This implementation strategy
requires that new activation records be added to the cali stack as soon as a new
subprogram is called and that the top of the cali stack is popped when the execution
of a subprogram returns.

Our idea then is to maintain during unfolding an ancestor stack, whose elements
are the ancestors of a goal, instead of a full proof tree. The advantages of this are
clear: since the ancestor stack corresponds to a single branch in the proof tree from
the current selected atom to all its ancestors in the proof tree, maintaining it should
offer signiñcant performance improvements both in terms of memory and time

efficiency. As in the case of control stacks, in order to compute ancestor stacks we
need to determine exactly when each ancestor should be pushed to and popped from
the ancestors stack. The ñrst part is relatively simple: any resolution step requires
pushing its associated selected atom. The second part, i.e., popping elements from
the stack, is more complicated since we need to know when the computation of
the associated cali (or subprogram) is ñnished. In logic programming terminology
this corresponds to determining the (partial) success states for all atoms in the
derivation. In principie, success states for individual atoms are not observable in
SLD resolution, except for the top-level query. As a result, and as we discuss below,
some changes in the operational semantics will be needed in order to make this
information explicit.

Another important observation which we exploit in this paper is that the idea of
using a stack for storing the active part of a tree does not need to be restricted to
leftmost computation and it works equally well as long as the computation rule is
local. Indeed, sibling atoms, i.e., with the same ancestor depth, can be selected in
any order and the idea of using an ancestor stack still applies.

4-2 ASLD Resolution: SLD resolution with ancestor stacks

We now propose an easy-to-implement modiñcation to SLD resolution as presented
in Section 2 in which success states for all internal calis are observable —and where
the control word is available at each state. We will refer to this resolution as SLD
resolution with ancestor stacks, or ASLD for short. The proposed modiñcation
involves 1) augmenting goals with an ancestor stack, which at each stage of the
computation contains the control word of the derivation, which corresponds to
the ancestors of the next atom which will he selected for resolution, and 2) adding
pseudo-atoms to the goals used during resolution which mark a scope (i.e., it sepa-
rates groups of atoms which are at different depth in the proof tree). In particular,
we use the pseudo-atom j (read as "pop") to indicate the end of a depth scope,
i.e., after it we move up in the proof tree. It is guaranteed not to clash with any
existing predicate ñame. And its purpose is twofold: 2.1) when a mark is leftmost
in a goal, it indicates that the current state corresponds to the success state for
the cali which is now on top of the ancestor stack, i.e., the cali is completed, and
the atom on top of the ancestor stack should be popped; 2.2) the atoms within the
scope of the leftmost mark have maximal ancestor depth and thus a local unfolding
strategy can be easily deñned in the presence of these pseudo-atoms.

The following two deñnitions present the derivation rules in our ASLD semantics.
Now, a state S is a tupie of the form (G I AS) where G is a goal and AS is an
ancestor stack (or stack for short). The stack will keep track of the ancestor atoms
that the new selected atoms need to be compared to (by means of the wqo being
used). Thus the stack will be instrumental in being able to stop a derivation as
soon as termination of the process can no longer be guaranteed by the wqo being
used. To handle such stacks, we will use the usual stack operations: empty, which
returns an empty stack, push(J4S', Itera), which pushes ítem onto the stack AS, and
pop(J4S'), which pops an element from AS. In addition, we will use the operation

contents(J4S'), which returns the sequence of atoms contained in AS in the order in

which they would be popped from the stack AS and leaves AS unmodiñed.

Definition 11 {derive)

Let G = <— Ai,..., AR, ... ,Ak be a goal with Ai ^ j . Let S = (G \ AS) be a

state and AS be a stack. Let <s be a wqo. Let 72. be a computation rule and let

72(G) =AR with AR y^ I . Let C = H <— £> i , . . . , B m be a renamed apart clause.

Then S' = (G' I AS") is deríved from S* and C via 72. if the following conditions

hold:

Admissible(AR, cor\ter\ts(AS), <s)

6 = mgu(AR, H)

G' is the goal <- 6(Bi,...,Bm, | , ̂ 4i, • • •, AR-i, AR+Í,..., Ak)

AS' = <pus\\{AS,AR)

The der ive rule behaves as the one in Deñnition 2 but in addition: i) the mark j

"pop" is added to the goal, and ii) a copy of AR is pushed onto the ancestor stack.

As before, the der ive rule is non-deterministic if several clauses in P unify with

the a tom AR. However, in contrast to Deñnition 2, this rule can only be applied

to an a tom different from j if 1) the leftmost a tom in the goal is not a j mark,

and 2) the current selected a tom AR together with its ancestors do constitute an

admissible sequence. If 1) holds but 2) does not, this derivation is stopped and we

refer to such a derivation as ínadmíssíble or unsafe (see Deñnition 8).

Definition 12 {pop-derive)

Let G = <— Ai,..., Ak be a goal with Ai = | . Let S = (G I AS) be a state and

AS be a stack. Then S' = (G' I AS'} with G' = ^ - A2,..., Ak and AS' = pop(J4S')

is pop-derived from S.

The p o p - d e r i v e rule is used when the leftmost a tom in the resolvent is a j

mark. Its effect is to elimínate from the ancestor stack the topmost atom, which

is guaranteed not to belong to the ancestors of any selected a tom in any possible

continuation of this derivation.

Note tha t derive steps w.r.t. a clause which is a fact are always followed by a

pop-derive and thus they can be optimized by not pushing the selected atom AR

onto the stack and not including a j mark into the goal which would immediately

pop AR from the stack. They have been also optimized in the implementation

described in Section 6. Next, we present the following rule derive-fact with such an

optimization, although we do not use it for our formal developments in Section 4.3.

Indeed, its inclusión in the semantics would require tha t rule der ive is only applied

if m > 0.

Definition 13 (derive-fact)

Let G = <— Ai,..., AR, ... ,Ak be a goal with Ai ^ j . Let S = (G \ AS) be a

state and AS be a stack. Let <s be a wqo. Let 72 be a computation rule and let

K(G) =AR with AR T¿ t . Let C = H. be a renamed apart fact. Then S' = (G1 I AS)

is derived from S and C via 1Z if the following conditions hold:

Admissible(AR, cor\ter\ts(AS), <s)

6 = mgu(AR, H)

G' is the goal <- 6{Ai,..., AR-Í, A R + 1 , ..., Ak)

Computation for a query G starts from the state SQ = (G I em pty). Given a non-
empty derivation D, we denote by curr.goal(D) and curr_ancestors(D) the goal and
the stack in the last state in D, respectively. At each step of a derivation D at
most one rule, either derive, derive-fact or pop-derive, can be applied.

Example 1
Figure 4 illustrates the ASLD derivation corresponding to the derivation with ex-
plicit ancestor annotations of Figure 2. Sometimes, rather than writing the atoms
themselves, we use the same numbers assigned to the corresponding atoms in Fig
ure 2. By abuse of notation, we again always use the same number assigned to
an atom although further instantiation is performed. The stack contains the list
of atoms exactly in the instantiation state they have when they are pushed in the
stack. Each step has been appropriately labeled with the applied derivation rule.
Although rule external-derive has not been presented yet, we can just assume that
the code for the external predicate =< is available and has the expected behavior.

It should be noted that, in the last state, the stack contains exactly the ancestors
of p a r t i t i o n ([1] , 1 ,L1 ' ,L2 ') , i.e., the atoms 4 and 1, since the previous calis
to p a r t i t i o n have already ñnished and thus their corresponding atoms have been
popped off the stack. Thus, the admissibility test for p a r t i t i o n ([1] , 1 ,L1 ' ,L2')
succeeds, and unfolding can proceed further without risking termination. Indeed,
the derivation can be totally unfolded, which results in the following (optimal)
partial evaluation in which all input data have been satisfactorily consumed

qso r t ([l , l , l] , [l , l , l] , []) .

Finally, since the goals obtained by ASLD resolution may contain atoms of the form
| , resultants are cleaned up before being transferred to the global control level or
during the code generation phase by simply eliminating all atoms of the form j .

It is easy to see that for each ASLD derivation Ds there is a corresponding
SLD derivation D with the same computed answer and the same goal without
the | atoms. Such SLD derivation is the one obtained by performing the same
derive steps (with exactly the same clauses) using the same computation rule and
by ignoring the pop-derive steps since goals in SLD resolution do not contain j
atoms. We use simplify{Ds) = D to denote that D is the SLD derivation which
corresponds to Ds-

4-3 Accuracy results

We would now like to impose a condition on the computation rule which allows
ensuring that the contents of the stack are precisely the ancestors of the atom to be

({qs([l , l , l] ,R,0)}IQ)

X derive

({2,3,4, T}l[qsor t ([i , i , i] ,R,0)]>
X derive

({5,6, T , 3 , 4 , T }l [par t ([l , l] , l ,Ll ,L2) ,qs([l , l , l] ,R, 0)]}
X external —derive

({6, T , 3 , 4 , T}l [par t ([l , l] , l ,L l ,L2) ,qs([l , l , l] ,R,D)}]
X derive

({ 7 , 8 , t , T , 3 , 4 , t } I [pa r t ([l] , l , L , L 2) , p a r t ([l , l] , l , L l , L 2) , q s ([l , 1,1],R, •)]}

i, external —derive

({8, t , t , 3 , 4 , t } I | p a r t ([l] , l , L , L 2) , p a r t ([l , l] , l , L l , L 2) , q s ([l , l , l] , R , •)]}

J, derive— f act

({ T , T , 3 , 4 , t } I [p a r t ([l] , l , L , L 2) , p a r t ([l , l] , l , L l , L 2) , q s ([l , l , l] , R , 0)]}

X pop—derive

({ T , 3 , 4 , T}l [par t ([l , l] , l ,L l ,L2) ,qs([l , l , l] ,R ,D)]}
A, pop — derive

({3,4, T}l [qsor t ([i , i , i] ,R,0)]>
X derive— f act

({4, T}l[qsort([l , l , l] ,R,Q)]>

X derive

({ p a r t ([l] , l , L l ' , L 2 ') , 1 0 , l l , | , | } l [q s o r t ([l , 1], R, [l]) , q s o r t ([l , 1, 1], R, [])])

Fig. 4. ASLD Derivation for the example

selected. The following notion of depth-preserving computat ion rule allows precisely

this.

Definition 14 (depth-preserving)
A computat ion rule 1Z is depth-preserving if for each non-empty goal G = <—

A i , . . . , Ak with Ai ^ T , ^ (G) = AR and T £ { A 2 , . . . , AR}.

Intuitively, a depth-preserving computat ion rule always returns an a tom which is

strictly to the left of the ñrst (leftmost) j mark. Note tha t j is used to sepárate

groups of atoms which are at different depth in the proof tree. Thus, the notion

of depth-preserving computation rules in ASLD resolution is equivalent to tha t of

local computat ion rules in SLD resolution.

Proposition 1 (ancestor stack)

Let Ds be an ASLD derivation for the initial query G in program P via a depth-

preserving computat ion rule. Let D be an SLD derivation such tha t simplify (Ds) =

D. If, curr_goal(Ds) = A\,...,An, | , . . . and curr.ancestors(Ds) = AS, we

distinguish two cases:

• if Ai T¿ 1" , then contents(AS') = Ancestor s (A¿, D) for A¿ ^ \ for i = 1 , . . . ,n,

• if Ai = | , then the a tom on the top of AS'has no descendents in curr_goal(Ds)

and contents(pop(AS')) = Ancestors(Ai, D) for A¿ ^ | for i = 2 , . . . , n.

Proof
The proof is by induction on the length k oí the ASLD derivation, Ds, oí the form
SQ, • • • ,Sk where Si, for i = 0 , . . . , k, is the sequence of states corresponding to each
derivation step from the initial state 5*0 = (G \ em pty). To simplify the proof, we
do not make explicit distinction between rules derive and derive-fact.

base case (k = 1). Consider the initial state 5*0= (G \ empty) where the goal
G is of the form <— A\,... ,AR, ... ,An, n > 1. Initially, all atoms in G are
different from j , i.e., Ai ^ \ for i = 1 , . . . ,n. Therefore, we can only apply
rule derive to SQ. Let us assume that 72. is a depth-preservíng computation rule
and 1Z(G) =AR. Let C = H <— B\,..., Bm be a renamed apart clause with 9 =
mgu(AR, H). The test Admissible(AR, contents(empty), <s) holds (otherwise the
derivation step is not possible). Then, the state Si = (G' I AS') is derived from
So and C where G' = 9(B1,.. .,Bm, | ,A1,..., AR-I,AR+Í,.. .,An) and AS" =
push(empty,Añ).
Now, we want to prove that contents(push(empty, AR)) = Ancestors(Bi, D),
i = 1 , . . . , m, for the equivalent SLD derivation D. Henee, we perform the cor
responding SLD step from <— Ai,..., AR, ..., Am using the same computation
rule 72 and the same clause C. In D, we derive the goal:

6{B\,..., Bm, Ai,..., AR-I, AR+I, ..., Ak)

By deñnition of ancestor (Def. 6), AR is the only ancestor of B¿ in D, i = 1 , . . . , m.
Consequently, contents(push(empty, AR)) = Ancestors(B¿, D) holds and our claim
follows.

inductive case (k > 1). We decompose the ASLD derivation Ds of length k in
two parts. The ñrst part, Ds-i, is the derivation from So to Sk-i of length k — í.
The second part corresponds to the last ASLD derivation step from Sk-i to Sk-
Let Sfc_i = (Gk-i I ASk-i) with Gfc_i =Ai,...,An, | , . . . and Ai ± \ for
i = 1 , . . . , n. We now distinguish two cases depending on the valué of n:

(n > 0): We ñrst apply the inductive hypothesis to the ASLD derivation, Ds-i,
of length k — 1 of the form So , . . . , Sk-i- Consider that D' is the equiva
lent SLD derivation obtained by simplify(Ds-i) = D'. Now, we perform
the last ASLD derivation step from Sk-i- Since Ai ^ j , we can only
apply rule derive to Sk-i- By assumption, 72 is a depth-preserving com
putation rule. Thus, it will select an atom AR from Ai to An. In par
ticular, assume that TZ(Gk-i) =AR. Let C = H <— B\,... ,Bm be a
renamed apart clause with 0 = mgu(AR, H). We assume that the test
Admissible(AR, contents(ASfc_i), <s) holds, otherwise the step is not pos
sible. Then, Sk = (Gk I ASk) is derived from Sk-i and C where

Gk = 9(Bi,... ,Bm, | ,Ai,... ,AR^I,AR+I, ... ,An, | , . . .)
ASk = push(ASk-i,AR)

Now, we want to prove that contents(ASfc) = AncestorsíBi, D), for i =
1 , . . . , m, for the equivalent SLD derivation D. Henee, we perform the cor
responding SLD step from the last goal, named Q, in D'. We know that

Q is of tlie form Q = Ai,... ,An,... since simplify(Ds-i) = D' and all
Ai y^ I . By using the same local computation rule for SLD resolution,
the selected atom is also AR. With the same clause C, we derive the goal
6(BÍ, ..., Bm, Ai,..., AR-X, A R + 1 , ...,An,...). Now, by applying Defini-
tion 6), the ancestors of B¿ are AR plus the ancestors of AR in D', for
i = í, . .. ,m.
Finally we proceed to put together the conclusions obtained from the two
derivations. On one hand, we have that contents(AS'fc_i) = Ancestors(Ai, D'),
i = 1 , . . . , n. In particular, we have that contents(AS'fc_i) = Ancestors(AR, D')
for i = R. Thus, we have that:

ASk = push(A5fc_i,Añ)
contents(AS'k) = [AR\ASk}= Ancestors{BuD)

which proves our claim.
(n = 0): In this case, the goal is of the form Gk-i = | , G\, C2, • ... By the inductive

hypothesis, we know that the atom on the top of ASk has no descendents in
curr_goal(Ds-i) and contents(pop(AS'fc_i)) = Ancestors(Ci, D') for C¿ ^
I for i = 1 , . . . , n. Now, the only possibility is that Sk = (Gk I ASk) is pop-
deríved from Sk-i with Gk = G\, C2 • • • and ASk = pop(ASk-i). Therefore,
we have that contents(AS'fc) = contents(pop(AS'fc)) = Ancestors(Ci, D').
Finally, in the equivalent SLD derivation step D from D', no step is per-
formed as símplífy removes the corresponding atom (i.e., the j mark).
Henee, Ancestors(Ci, D) = Ancestors(Ci, D') and the result holds.

D

The above result trivially holds for leftmost unfolding which is always depth-
preserving. The next theorem guarantees that we do not lose any specialization
opportunities by using our stack-based implementation for ancestors instead of
the more complex tree-based implementation, i.e., our proposed semantics will not
stop "too early". It is a consequence of the above proposition and the results in
(Bruynooghe et al. 1992) about wqo.

Theorem 1 (aecuracy)
Let D be an SLD derivation for query G in a program P via a local computation
rule. Let <s be a wqo. If the derivation D is safe w.r.t. <s then there exists an
ASLD derivation Ds for G and P via a depth-preserving computation rule such
that simplify(Ds) = D.

Proof
The proof is by contradiction. We consider the safe SLD derivation D of length k
for G via a local computation rule 1Z. Trivially, the partial derivation D' of length
k — 1 from G to a goal G" is safe.

Now, the assumption is that, Ds, the ASLD derivation for S = (G I empty) cor
responding to D is not safe. In particular, we consider the partial ASLD derivation,
D's, from the state S to the state S', such that símplífy (D's) = D' and, from which a
further ASLD derivation step for S' is not safe, i.e., it would result in an inadmissible

derivation. The state S' is of the form S' = (G1 I AS') with G" = Au ..., An, | , • • •
and Ai ^ j , for i = 1 , . . . ,n. By Deñnition 14, the depth-preserving computation
rule can only select an atom Ai, for i = 1 , . . . , n.

Since a safe derivation step from S' cannot be performed, the truth valué of the
expression:

Admissible(Ai, contents(AS'), <s)

is false for any selected atom Ai, i = 1 , . . . , n. By Deñnition 4, this means that
y Ai, 3B G contents(AS') : B <s Ai. By applying Proposition 1, we have that the
truth valué of Admissible(Ai, Ancestors(Ai, D'), <$) is false as well. Therefore,
\lAi, 3B G Ancestors(Ai,D') : B <s Ai.

Finally, since símplífy (D's) = D' and all atoms Ai ^ | , G' is a goal of the form
Ai,..., An,... The equivalent computation rule, 1Z, can select the same atoms Ai.
However, Admissible(Ai, Ancestors(Ai, D'), <$) is false for all Ai, for i = 1 , . . . , n.
Thus, the last derivation step in D is inadmissible, henee, we have a contradiction.

D

Note that since our semantics disables performing any further steps as soon as inad
missible sequences are detected, not all local SLD derivations have a corresponding
ASLD derivation. However, if a local SLD derivation is safe, then its corresponding
ASLD derivation can be found.

It is interesting to note that we can allow more flexible computation rules which
are not necessarily depth-preserving while still ensuring termination. For instance,
consider a state (Ai,..., An, j , AR, . . . \ P) with j ^ {Ai,..., An} and a non
depth-preserving computation rule which seleets the atom AR to the right of the
| mark. Then, rule derive will check admissibility oí AR w.r.t. all atoms in the stack
P. However, the topmost atom of P, say P\, is an ancestor only of the atoms Ai to
the left of AR but it is not an ancestor of AR. The more j marks the computation
rule jumps over to select an atom, the more atoms which do not belong to the
ancestors of the selected atom that will be in the stack, thus, the more aecuracy
and efficieney we lose. In any case, the stack will always be an over-approximation
of the actual set of ancestors of AR.

Our local unfolding rule based on ancestor stacks can be used within any partial
deduction framework, including Conjunctive Partial Deduction (CPD) (De Schreye et al. 1999).
In principie, its use within the CPD framework does not pose any particular diffi-
culty and our unfolding rule can simply be incorporated as any other strategy within
the method. Indeed, the main distinction of CPD w.r.t. non conjunctive methods
is on the use of an enhanced global control which generates a set of conjunctions
rather than individual atoms, while any of the existing local control strategies can
be used in combination with such a global control. The only requirement is that
the unfolding rule takes as input a conjunction of atoms rather than a single atom,
which is always a trivial extensión. It should be noted that some CPD examples
may require the use of an unfolding rule which is not depth-preserving to obtain
the optimal specialization. As we discuss above, we cannot ensure aecuracy results
(though we still have correetness) in these cases but in turn the use of local unfold-

ing will improve the efficiency of the partial deduction process, as our experimental
results will show later.

5 Assertion-based Unfolding for External Predicates

Most of real-life Prolog programs use predicates which are not deñned in the pro-
gram (module) being developed. We will refer to such predicates as external. Ex-
amples of external predicates are (1) the traditional "built-in" predicates such as
arithmetic operations (e.g., i s / 2 , <, =<, etc.) and basic input/output facilities; (2)
those predicates deñned in a different module, (3) predicates written in another
language, etc. This section deals with the diñiculties that such external predicates
pose during partial deduction and extends our ASLD semantics to deal with them.

5.1 The notion of evaluable atom

When an atom A, such that pred(A) = p/n is an external predícate, is selected
during partial deduction, it is not possible to apply the derive rule in Deñnition 2
due to several reasons. First, we may not have the code deñning p/n and, even
if we have it, the derivation step may introduce in the residual program calis to
predicates which are private to the module M where p/n is deñned. In spite of
this, if the executable code for the external predícate p/n is available, and under
certain conditions, it can be possible to fully evalúate calis to external predicates at
specialization time. We use Exec(Sys, M, A) to denote the execution of atom A on
a logic programming system Sys (e.g., Ciao or SICStus) in which the module M,
where the external predícate p/n is deñned, has been loaded. In the case of logic
programs, Exec(Sys, M, A) can return zero, one, or several computed answers for
M U A and then execution can either termínate or loop. We will use substitution
sequences (Le Charlier et al. 2002) to represent the outcome of the execution of
external predicates. A substitution sequence is either a ñnite sequence of the form
(# i , . . . , 6n), n > 0, or an incomplete sequence of the form (é>i,..., 6n, _L), n > 0,
or an infinite sequence (é>i,..., é>¿,...), i G W*, where W* is the set of positive
natural numbers and _L indicates that the execution loops. We say that an execution
universally terminates if Exec(Sys, M, A) = {9\,. .., 9n), n > 0.

In addition to producing substitution sequences, it can be the case that the
execution of atoms for (external) predicates produces other outcomes such as side-
effects, errors, and exceptions. Note that this precludes the evaluation of such atoms
to be performed at partial evaluation time, since those effects need to be performed
at run-time. A clear example of this are input/output facilities. In order to capture
the requirements which allow executing external predicates at partial deduction
time we now introduce the notion of evaluable atom:

Definition 15 {evaluable)
Let A be an atom such that pred(A) = p/n is an external predícate deñned in
module M. We say that A is evaluable in a logic programming system Sys if
Exec(Sys, M, A) satisñes the following conditions:

1. it universally terminates

2. it does not produce side-effects

3. it does not issue errors

4. it does not genérate exceptions

We also say that an expression E is evaluable if 1) E is an evaluable atom, or 2)
E is a conjunction of evaluable expressions, or 3) i? is a disjunction of evaluable
expressions.

Clearly, some of the above properties are not computable (e.g., termination is un-
decidable in the general case). However, it is often possible to determine some
sufficient condítíons (SC) which are decídable and ensure that, if an atom A sat-
isñes such conditions, then A is evaluable. Intuitively, a sufficient condition can be
thought of as a traditional precondition which ensures a certain behavior of the
execution of a procedure provided they are satisñed. Then, if this process is applied
to a cali corresponding to an external predicate which is selected during partial
deduction, then that cali can be executed directly at partial deduction time. To
formalize this, we propose to use the notion of evaluable assertion. Basically, an
evaluable assertion is a pair containing a predicate descriptor and the sufficient
conditions for its instances to be evaluable.

Definition 16 {corred evaluable assertion)

Let p/n be an external predicate defined in module M. An evaluable assertion
(p(Xí,..., Xn), SC) is correct for predicate p/n in a logic programming system Sys
if, V<9:

• the expression 9(SC) is evaluable, and

• if Exec(Sys, M, 6(SC)) = (id) then 6(p(Xl, ...,Xn)) is evaluable.

In principie, assertions have to be provided manually by the supplier of the (ex
ternal) code. However, for predicates that are deñned in the source language and
use only external predicates for which those assertions are available, existing anal-
ysis tools (like those within the CiaoPP system4) are able to infer them in many
practical cases (see (Albert et al. 2006)), as we will discuss later.

One of the advantages of using this kind of assertion is that it makes it possible to
deal with new external predicates (e.g., written in other languages) in user programs
or in the system librarles without having to modify the partial evaluator itself. Also,
the fact that the assertions are co-located with the actual code deñning the external
predicate, Le., in the module M (as opposed to being in a large table inside the
partial deduction system) makes it more difficult for the assertion to be left out of
sync when a modiñcation is made to the external predicate. We believe this to be
very important to the maintainability of a real application or system library.

4 In this system, evaluable assertions are called eval assertions.

Example 2

Let us consider the following assertion for the builtin predícate <:

(A = < B, (a r i t h e x p r (A) , a r i t h e x p r (B)))

which states tha t if predícate =</2 is called with both arguments instantiated to

a term of type a r i t h e x p r , then the cali is evaluable in the sense of Deñnition 15.

In our implementation, we use the "cornputational assertions" which are par t of

the assertion language (Puebla et al. 2000) of CiaoPP, the Ciao system preproces-

sor (Hermenegildo et al. 2005), in order to declare evaluable assertions.

The type a r i thexpr corresponds to arithmetic expressions which, as expected,

are built out of numbers and the usual arithmetic operators. In our implementation

in Ciao, the type a r i t h e x p r is expressed as a unary regular logic program. This

allows using the underlying Ciao system in order to effectively decide whether a

term is an a r i thexpr or not.

5.2 The extensión of ASLD resolution

The following deñnition extends our ASLD semantics by providing a new rule,

external -der ive , for evaluating calis to external predicates. Given a sequence of

substitutions (é>i,. . . , 6n), we define Subst((6i,..., 9n)) = { # i , . . . , 9n}.

Definition 17 {external-derive)

Let Sys be a logic programming system. Let G = <— Ai,..., AR, ... ,AJ. be a goal.

Let S = (G I AS) be a state and AS a stack. Let 72 be a computat ion rule such

tha t 72(6?) =AR with pred(AR) = p/n an external predícate from module M. Let

C be an evaluable assertion (p (Xl , . . . , Xn), SC). Then, S' = (G' I AS') is external-

derived from S and C via 72 in Sys if:

a = mgu(AR,p(Xí, ...,Xn))

Exec(Sys,M,a(SC)) = (id)

6 G Subst(Exec(Sys, M, AR))

G' is the goal 6{Ai,..., AR-Í, A R + 1 , ..., Ak)

AS' = AS

Notice that , since after computing Exec(Sys, M, AR) the computat ion of AR is fin-

ished, there is no need to push (a copy of) AR into AS and the ancestor stack is

not modified by the ex terna l -der ive rule. This rule can be nondeterministic if the

substi tution sequence for the selected a tom AR contains more than one element,

i.e., the execution of external predicates is not restricted to atoms which are deter-

ministic. The fact tha t AR is evaluable implies universal termination. This in turn

guarantees tha t in any ASLD tree, given a node S in which an external a tom has

been selected for further resolution, only a finite number of descendants exist for S

and they can be obtained in finite time.

Example 3

: - module (main_prog, [main/2] , []) .
: - u se_modu le (comp , [long_comp/2] , []) .

main(X,Y) : - p rob lem(X,Y) , q (X) .

p r o b l e m (a , Y) : - g r o u n d (Y) , l o n g _ c o m p (c , Y) .
p r o b l e m (b , Y) : - g r o u n d (Y) , l o n g _ c o m p (d , Y) .

q (a) .

mam_prog

comp t e rm_typ ing

Fig. 5. Motivating Example

Consider the Ciao system with the assertion in Example 2 for 1=<1. Consider also
the atoms 5 and 7, which are of the form 1=<1, in the ASLD derivation of Figure 2.
Both atoms can be evaluated because

Exec(ciao, arithmetic, (arithexpr(í), arithexpr(í))) = (id)

This is a sufñcient condition for Exec(ciao, arithmetic, (1 = < 1)) to be evaluable.
Its execution returns Exec(ciao, arithmetic, (1 = < 1)) = (id).

In addition to the conditions discussed above which allow evaluating atoms for
external predicates at specialization time, an orthogonal issue is that of the cor-
rectness of non-leftmost unfolding in the presence of external predicates. For logic
programs without impure predicates, non-leftmost unfolding is sound thanks to the
independence of the computation rule (see for example (Lloyd 1987)).5 Unfortu-
nately, non-leftmost unfolding poses several problems in the context of full Prolog
programs with irnpure predicates, where such independence does not hold anymore.
For instance, ground/1 is an impure predicate since, under LD resolution, the goal
ground(X) ,X=afails whereas X=a,ground(X) succeeds with computed answer X/a.
Those executions are not equivalent and, thus, the independence of the computa
tion rule does no longer hold. As a result, given the goal <— ground(X) ,X=a, if
we allow the non-leftmost unfolding step which binds the variable X in the cali to
ground(X), the goal will succeed at specialization time, whereas the initial goal fails
in LD resolution at run-time. The above problem was early detected (Sahlin 1993)
and it is known as the problem of backpropagation of bindings. Also hackpropaga-
tion of failure is problematic in the presence of impure predicates. For instance, <—
write(hel lo) , f a i l behaves differently from <— f a i l . w r i t e (h e l i o) .

In order to illustrate the problem, consider the Ciao program in Fig. 5, which
uses the impure predicate ground/1 and whose modular structure appears to the
right. term_typing is the ñame of the module in Ciao where ground/1 is deñned
and predicate long_comp/2 is imported from the user module comp. Consider a de-
terministic unfolding rule and the entry declaration: ": - entry main(X, a) . " . The

5 However, non-deterministic unfolding of non-leftmost atoms can degrade efficiency.

unfolding rule performs an initial step and derives the goal p rob lem(X,a) ,q (X) .

Then, it cannot select the leftmost a tom p rob lem(X,a) because its execution per

forms a non deterministic step. In this situation, different decisions can be taken.

a) We can stop unfolding at this point. However, in general, it may be proñtable

to unfold atoms other than the leftmost. Interesting computation rules are able to

detect the above circumstances and "jump over" the problematic a tom in order to

proceed with the specialization of another a tom (in this case q(X)) . We can then

decide to b) unfold q(X) but avoiding backpropagating bindings or failure onto

p r o b l e m (X , a) . And the ñnal possibility c) is to unfold q(X) while allowing back

propagation onto p r o b l e m (X , a) . However, this will require tha t some additional

requirements hold on the atom(s) to the left of the selected one.

There are several solutions in the literature (see, e.g.,(Leuschel 1994; Etalle et al. 1997;

Albert et al. 2002; Leuschel and Bruynooghe 2002; Leuschel et al. 2004)) which al-

low unfolding non-leftmost atoms by avoiding the backpropagation of bindings and

failure, Le., in the spirit of possibility b). Basically, the common idea is to represent

explicitly the bindings by using uniñcation (Leuschel 1994) or residual case expres-

sions (Albert et al. 2002) rather than backpropagating them (and thus applying

them onto leftmost atoms). For our example, by using uniñcation, we can unfold

q(X) and obtain the resultant ma in (X,a) : - p r o b l e m (X , a) ,X=a. This guarantees

tha t the resulting program is correct, but it deñnitely introduces some inaccuracy,

since bindings (and failure) generated during unfolding of non-leftmost atoms are

hidden from atoms to the left of the selected one. The relevant point to note is tha t

preventing backpropagation, by using one of the existing methods, can be a bad

idea for at least the following reasons:

1. Backpropagation of bindings and failure can lead to an early detection of fail

ure, which may result in important speedups. For instance, if we allow back

propagating the binding X=a to the left atom, we get rid of the whole (failing)

computat ion for p r o b l e m (b , a) in the residual program.

2. Backpropagation of bindings can make the profitability criterion for the left

most atom to hold, which may result in more aggressive unfolding. In the

example, by backpropagating, we obtain the a tom p r o b l e m (a , a) which al-

lows a deterministic computat ion rule to proceed to its unfolding.

3. Backpropagation of bindings may allow better indexing by further instantiat-

ing arguments in clause heads. This is often good from a performance point of

view (see, e.g., (Venken and Demoen 1988)). In our example, we will obtain

the clause head m a i n (a , a) with bet ter indexing than m a i n (X , a) .

The bo t tom line is tha t backpropagation should be avoided only when it is really

necessary since interesting specializations can no longer be achieved when it is

disabled.

The problems involved in and some possible solutions to non-leftmost unfolding

can be found in the literature (Leuschel 1994; Etalle et al. 1997; Albert et al. 2002;

Leuschel and Bruynooghe 2002). However, there is still ampie room for improve-

ments. In particular, the intensive use of static analysis techniques in this assertion-

based context seems particularly promising. We are investigating the use of the

: - modu le (_ , [p / 2]) .
:— u s e _ p a c k a g e (l i b r a r y (a s s e r t i o n s)) .

p (Y , L) : - f i n d a l l (X , p r o p e r t y (X) , L) , \ + r (Y) .

:— t r u s t pred p r o p e r t y / 1 + (e v a l , s i d e f f (f r e e)) .
p r o p e r t y (X) : - q (X) , \ + r (X) .

q (a) . q (b) .

:— t r u s t pred r / 1 + (e v a l , s i d ef f (f ree)) .
r (b) .

Fig. 6. Program with meta-calis

analyzers available in CiaoPP with this aim, though this is outside the scope of this
article.

5.3 Handling of meta-predicates

Though not introduced in the formalization for simplicity, our partial evaluator
can handle the usual Prolog meta-predicates, such as c a l l / 1 , f i n d a l l / 3 , bagof/3,
and se to f /3 . Meta-predicates are characterized by receiving one or more atoms
as input. For example, c a l l / 1 receives an atom as its only input and f i n d a l l / 3
receives a goal in its second argument position. The simplest possible handling
of meta-predicates consists in residualizing all meta-calis, Le., all calis to meta-
predicates, and transferring the atoms which appear as arguments in such meta-
calis to the global control for their subsequent partial evaluation. For this, all meta-
predicates must be declared as such and the arguments which contain atoms must
be known in advance. In the case of Ciao this is done using assertions.

As a further optimization, when the atoms which appear in meta-calis are evalu
able, then rather than residualizing the meta-cali, our partial evaluator evaluates
both the atom itself and also the cali to the meta predicate. This is an important
optimization because partial evaluation loses a lot of precisión when unfolding is
stopped and atoms are transferred to the global control.

Another important feature of Prolog programs is negation as failure, i.e., the
\ + / l meta predicate. In order to preserve the semantics of negation as failure,
evaluation of a meta-cali of the form \+ A requires A to be ground. Therefore, at
partial evaluation time a meta-cali \+ A is only evaluated if both A is evaluable and
ground. If this is not the case, the meta-cali is residualized and A is transfered to the
global control. This allows a relatively simple handling of negation as failure where
\ + / l is considered as a meta predicate with the additional evaluation requirement
that its associated atom is ground.

Example 4
Figure 6 shows an example Ciao program containing calis to the f i n d a l l / 3 meta-

: - m o d u l e (_ , [p / 2]) .
:— u s e _ p a c k a g e (l i b r a r y (a s s e r t i o n s)) .

p (A , [a]) : - \ + r _ l (A) .

:— t r u s t pred r _ l (_ l) + (e v a l , s i d e f f (f r e e)) .
r - l (b) .

Fig. 7. Partially evaluated program with meta-calis

predicate and negation as failure. The trust assertions in Ciao syntax inform the
partial evaluator that all calis to the property/1 and r/1 predicates are evaluable.

As a result, the f indall(X,property(X) ,L) meta-cali is evaluable and can be
replaced by the uniñcation L=[a]. However, the second meta-cali, i.e., \+ r(Y) is
residualized since Y remains a variable at partial evaluation time. The resulting
program obtained by our partial evaluator is shown in Figure 7. Since partially
evaluated atoms are renamed, the specialized versión of r(Y) has been renamed to
r_l (Y). The atom p(A,B) keeps its original ñame since it is an exported predicate,
in order to preserve the module interface.

6 Experimental Results

We have implemented in our partial evaluation system the unfolding rule we pro
pose, together with other variations in order to evalúate the efficiency of our pro-
posal. Our partial evaluation system has been integrated in a practical state of the
art compiler which uses global analysis extensively: the Ciao compiler and, specif-
ically, its preprocessor CiaoPP (Hermenegildo et al. 2005). For the tests, the whole
system has been compiled using Ciao 1.13 (Bueno et al. 2009). All of our experi-
ments have been performed on an Intel Core 2 Quad Q9300 at 2.5GHz with 1.95GB
of RAM, running Linux 2.6.28-15.

The programs used as benchmarks are indicated in the Bench column. They
are classical programs often used as benchmarks for analysis and partial evaluation
of logic programs. They are described in more detail below. Since our proposal
improves the performance of the unfolding process, i.e., the local control, we have
chosen as benchmarks programs whose partial evaluation performs plenty of unfold
ing, since this allows observing the beneñts of our proposal better. In particular,
three of the benchmarks considered: advisor3, query, and zebra can be fully un-
folded using homeomorphic embedding with ancestors. In the rest of the programs
we provide initial queries which are partially instantiated in order to show that our
partial evaluation system also includes global control and can partially evalúate pro
grams whose input data is not fully instantiated. Our global control is also based
on homeomorphic embedding. When a new atom is going to be specialized, we ñrst
check whether it embeds any of the previously specialized atoms. In that case, the
new atom is generalized before being specialized by using the most speciñc general-
ization of the new and the embedded atom. Otherwise, the new atom is specialized

Relation Tree Stack Rel/Stack Tree/Stack

Bench

advisor3

nrev_80

nrev_43

permute6

query

qsort_80

qsort_23

rev_80

zebra

G

0

oo

12

4

0

oo

222

3

0

L

103

oo

912

526

92

oo

797

555

1043

G

0

38

10

4

0

15571

229

2

0

L

183

50622

2804

651

102

430485

1615

581

1682

G

0

46

13

9

0

15582

213

2

0

L

151

7985

774

453

86

47923

566

547

1052

T

0.68

oo

1.17

1.15

1.07

oo

1.31

1.02

0.99

L

0.68

oo

1.18

1.16

1.07

oo

1.41

1.01

0.99

T

1.21

6.31

3.58

1.42

1.19

7.02

2.37

1.06

1.60

L

1.21

6.34

3.62

1.44

1.19

8.98

2.85

1.06

1.60

Table 1. Performance of Ancestor Stacks in Terms of Execution Time

as is. For our experiments, we use as input lists whose ñrst part is instantiated to
integers and then the rest of the list is unknown, i.e., just a variable, at partial
evaluation time. In the tables, we add to the ñame of the benchmark the number of
elements in the input list which are instantiated. For example, nrev_80 should be
interpreted as the well-known naive reverse program together with a query which
has as input a list of the form [1 , . . . , 80|T], with T a free variable.

The advisor3 program is a variation of the advisor program in the DPPD (Leuschel 2002a)
library. The query and zebra programs are classical benchmarks for program anal-
ysis. In particular, query performs a query to a small Prolog datábase and zebra
implements a simple logical puzzle. Program qsort corresponds to the quick-sort
program shown in the article. The part of the list which is instantiated is not or-
dered. The rev benchmark is another list re versal program, but now with linear
complexity, using an accumulator. Finally, permute is a permutation program which
uses a nondeterministic deletion predicate. Note that two of the programs (nrev
and qsort) are partially evaluated w.r.t. two different input lists. The smaller of the
two corresponds to the largest possible partially instantiated list that the partial
evaluator can handle using the Relation implementation explained below, without
running out of memory. Importantly, none of advisor3, query, ñor zebra can be
fully unfolded using homeomorphic embedding over the full sequence of selected
atoms. Also, nrev and, as seen in the running example, qsort are potentially not
fully unfolded if the input lists contain repetitions unless ancestors are considered.

In the next two tables, we compare three different implementations of unfolding
based on homeomorphic embedding with ancestors:

Relation We refer to an implementation where each atom in the resolvent is an-
notated with the list of atoms which are in its ancestor relation, as done in the
example in Figure 2.

TVees This column refers to the implementation where the ancestor relations of
the different atoms are organized in a proof tree.

Stacks The column Stacks refers to our proposed implementation based on an
cestor stacks.

6.1 Execution times

Let us explain the results in Table 1. Times are in milliseconds, measuring runtíme,
and are computed as the arithmetic mean of ñve runs. The partial evaluation time
in each implementation is split into two columns. The ñrst one, labeled G, shows
the time taken by global control. The second one, labeled L, shows the time taken
by local control (Le., unfolding). The benchmarks nrev_80 and qsort_80 contain
the valué oo instead of a number in the G and L columns for Relation to indi-
cate that the partial evaluation system has run out of memory. For each of these
two benchmarks, we have repeated the experiment with the largest possible initial
query that Relation can handle in our system before running out of memory, Le.,
nrev_43 and qsort_23. Relation is quite efñcient in time for those benchmarks
it can handle, though a bit slower than the one based on stacks. However, and as
can be seen in Table 2, its memory consumption is extremely high, which makes
this implementation inadmissible in practice. Regarding TVees, this implementa
tion, based on proof trees, has good memory consumption but it is signiñcantly
slower than Relation due to the overhead of traversing the tree for retrieving the
ancestors of each atom.

The last four columns compare the relative specialization times of Relation and
TVees w.r.t. the Stacks algorithm. It should be observed that these three alterna-
tives are different implementations of the same local control strategy, and that the
same global control strategy is used in all three cases. Therefore, exactly the same
residual programs are obtained in the three cases. As the table shows (with valúes
greater than one), Stacks is faster than TVees in all cases. Furthermore, Stacks is
even faster than the implementation based on explicitly storing all ancestors of all
atoms (Relation) for most programs, while having a memory consumption com
parable to (and in fact, slightly better than) the implementation based on proof
trees. Two speedups are shown per implementation. One, named L, only considers
the time required for local control, and the other one, named T, considers the total
time of global plus local control. The actual speedups w.r.t. TVees range from 1.06
in the case of rev_80 to 8.98 L (7.02 T) in the case of qsort_80. This variation is
due to the different shapes which the proof trees can have for the (derivations in
the) SLD tree. In the case of rev, the speedup is low since the SLD tree consists of
a single derivation whose proof tree has a single branch. Thus, in this case consider
ing the ancestor sequence is indeed equivalent to considering the whole sequence of

Memory Consumption Relative Memory Reduction

Bench

advisor3

nrev_80

nrev_43

permute_6

query

qsort_80

qsort_23

rev_80

zebra

Overall

Relation

1667260

mem

56255068

23361920

2764368

mem

11130584

2552524

26819712

Trees

850612

1076384

1103980

1959004

8064

5660460

630048

144264

107760

Stacks

751112

944936

1041490

1431976

7520

5038540

598212

139076

101280

Relation

2.22

oo

54.01

16.31

367.60

oo

18.61

18.35

264.81

oo

Trees

1.13

1.14

1.06

1.37

1.07

1.12

1.05

1.04

1.06

1.15

Table 2. Performance of Ancestor Stacks in terms of Memory Consumption

selected atoms. But note that this only happens for binary clauses. It is also worth
noticing that the speedup achieved by the Stacks implementation increases with
the size of the SLD tree, as can be seen in the two benchmarks which have been
specialized w.r.t. different queries. The overall resulting speedup of our proposed
unfolding rule over other existing ones is signiñcant: over 8 times faster than our
tree-based implementation.

6.2 Memory consumption

We have also studied the memory required by the unfolding process. Let us briefly
discuss the figures depicted in Table 2 which represent, in number of bytes, memory
consumption. It has been measured at each derivation step during the construction
of the ASLD trees. At each step, the resulting numbers for all memory áreas (stack,
heap, etc.) have been added and then compared to the previous máximum valué,
taking always the larger of the two, thus computing the high water mark, Le., the
máximum memory required to perform unfolding. The figures show, for each bench-
mark, the high water mark minus the memory already in use when the construction
of the SLD tree was started. In order to make these numbers closer to the actual
memory used, garbage collection has remained enabled during the different exper-

iments. In order to make memory figures comparable, we forcé garbage collection
just before starting partial evaluation of each benchmark.

In the last row, labeled Overall, we summarize the results for the different bench
marks using a weighted mean, which places more importance on those benchmarks
with relatively larger unfolding figures. We use as weight for each program its actual
unfolding time/memory. We believe that this weighted mean is more informative
than the arithmetic mean, as, for example, doubling the speed in which a large
unfolding tree is computed is more relevant than achieving this for small trees.

As Table 2 shows, the Stacks algorithm presents lower consumption than either
of the two other algorithms studied for any of the programs. It can be seen that the
amount of memory required by the Relation algorithm precludes it from its prac-
tical usage. Regarding the Stacks algorithm, not only it is significantly faster than
the implementation based on trees. Also it provides a relatively important reduc-
tion (1.15 overall, computed again using a weighted mean) in memory consumption
over Trees, which already has a good memory usage.

Altogether, when the results of Table 1 and Table 2 are combined, they provide
evidence that our proposed techniques allow significant speedups while at the same
time requiring somewhat less memory than tree based implementations and much
better memory consumptions than implementations where the ancestor relation is
directly computed. This suggests that our techniques are indeed effective and can
contribute to making partial evaluation a practical tool.

6.3 Comparison with Ecce. Specialization Quality.

Finally, in Table 3, we want to compare our implementation with that of a state-of-
the-art partial evaluator and see the quality of the specialized programs. To do so,
we have also measured the time that it takes to process the same benchmarks using
Leuschel's Ecce (Leuschel 2002a) system. For this, we have used the compiled ver
sión available at http://www.stups.uni-duesseldorf.de/~asap/asap-online-demo/meccedownloads
and run the experiments on the same machine. These execution times are provided
in columns Ecce¿ and Ecceg which show, respectively, the time taken by local
and the global control in Ecce. When compared with L and G in Table 1 for the
stack implementation, the results provide evidence that our proposed stack-based
implementation compares quite well with state of the art systems as regards special
ization times. Indeed, the specialization times using our stack-based implementation
are considerably smaller for all benchmarks with high local control times. In those
benchmarks in which Ecce is faster than the Stacks implementation, it is due to the
unfolding rules not being identical which results in Ecce performing fewer unfolding
steps. Note that performing less unfolding may lead to less specialized programs,
which are often less efficient.

The next columns aim at evaluating the quality of the specialized programs in
Ecce and in our system by comparing their runtimes with those of the original
programs. We have chosen sufficiently large input data and run the original pro
gram (column Orig), the specialized one by our system (column Stacks) and the
specialized one by Ecce (column Ecce) on the same data and the same number of

http://www.stups.uni-duesseldorf.de/~asap/asap-online-demo/meccedownloads

Bench EcceL EcceG Orig Stacks Ecce O/S O/E E/S

advisor3

nrev_80

nrev_43

permute_6

query

qsort_80

qsort_23

rev_80

zebra

0

19310

2910

40

20

85300

260

10

170

30

1297700

105600

20

90

269070

900

730

300

1149

1005

864

934

1106

1178

978

1132

6

1119

30

41

301

55

15

34

712

1069

1042

64

102

620

570

17

34

704

384.90

1.03

33.50

21.07

3.10

20.11

78.53

29.12

1.59

2.30

1.10

15.70

8.50

1.51

1.94

70.14

29.12

1.61

167.00

0.93

2.16

2.49

2.06

10.32

1.11

1.00

0.99

Table 3. Comparison with Ecce. Specialization Quality.

times and show the aggregated runtime. The last three columns show the speedup
achieved for each benchmark. In particular, O/S and O / E show, respectively, the
speedup of Stacks and Ecce w.r.t. the original program and E / S compares Ecce
against Stacks. It should be observed that in all cases the specialized programs in
both Ecce and Stacks are more efficient than the original ones and in most cases the
gain is signiñcant. The cases in which Stacks performs better than Ecce (e.g., query
and zebra) are because we can fully unfold them in Stacks while Ecce stops the
specialization earlier. Henee, the gain is much larger. It is also important to notice
that in the example advisor, the specialization obtained by Stacks also performs
more unfolding steps than the one in Ecce. In this case, such additional unfolding
results in an unneeded over-specialization which increases the size of the residual
program and leads to a less efficient execution.

7 Related Work and Conclusions

The development of powerful unfolding rules has received considerable attention
during the last years (Leuschel and Bruynooghe 2002). The most successful tech-
niques to date are based on two fundamental ingredients:

• the use of a wqo which can be used to guarantee termination while achieving
very powerful unfoldings,

• structuring the atoms already visited in each derivation in a tree rather than
using an unstructured collection, such clS el S6TJ.

Among the well-quasi orderings, the homeomorphic embedding (Kruskal 1960; Leuschel and Bruynooghe 2002)
has proved to be very poweríul in practice. Regarding the structure to use for vis-
ited atoms, the notion oí ancestors seems to be the best one since it guarantees
termination while allowing transformations which are strictly more poweríul than
those achievable if unstructured collections are used.

The use oí ancestors for reñning sequences of visited atoms was proposed early on
by (Bruynooghe et al. 1992) and signiñcant effort has been devoted to improve the
implementation of ancestors (Martens and De Schreye 1996). However, the combi-
nation of wqo and ancestors happens to be very inefficient in practice. This is mainly
due to the fact that dependency information has to be maintained for the individ
ual atoms in each derivation. In principie, the use of ancestors should not only
allow more poweríul transformation but also speed up unfolding since it reduces
the length of sequences for which admissibility has to be checked. Unfortunately,
maintaining such information about ancestors during the generation of SLD trees
introduces a costly overhead which can eliminate the theoretical efficiency gains.

In this work we have proposed ASLD resolution, a novel extensión over the SLD
semantics to incorpórate ancestor stacks which can be used as a basis for the efficient
generation of (incomplete) SLD trees during partial deduction in combination with
wqo. The main features of the implementation technique and extensions that we
propose for the ancestor-based local unfolding rule, based on ASLD resolution, are:
(1) it is parametric w.r.t. the wqo of interest; (2) it can handle logic programs
with builtins; (3) it is guaranteed to always provide ñnite trees; (4) it is very easy
to implement since the ancestor information is simply stored using a stack; (5)
it provides a very efficient implementation of ancestor information; (6) if certain
conditions are imposed on the computation rule, then it is as accurate as standard
(more inefficient) unfolding rules based on ancestors. Note that, as it is the case
with unfolding rules based on traditional SLD resolution, our semantics can be
used in combination with a determinacy check which may decide to stop unfolding
even if termination is guaranteed whenever too many alternative, non-deterministic,
branches are generated in the SLD tree.

The unfolding rule proposed in this work has been implemented in the CiaoPP
system (Hermenegildo et al. 2005), the preprocessor of the Ciao programming lan-
guage. Experimental results are promising: they provide evidence that our pro
posed techniques allow signiñcant speedups while at the same time requiring some-
what less memory than tree-based implementations and much better memory con-
sumptions than implementations where the ancestor relation is directly computed.
Though specialization time is obviously not as critical as execution time, being able
to perform poweríul specializations in reasonable time can only contribute to the
practical takeup of partial deduction techniques.

As for future work, we plan to incorpórate in our partial evaluator (embed-
ded in CiaoPP) the extensions needed to perform Conjunctive Partial Deduction
and to investígate whether local unfolding can be successfully used in this con-
text. We are also investigating additional solutions for the problems involved in
non-leftmost unfolding for programs with extra logical predicates beyond those
presented in the literature (Leuschel 1994; Etalle et al. 1997; Albert et al. 2002;

Leuschel and Bruynooghe 2002). In particular, the intensive use of static analy

sis techniques in this context seems particularly promising. In our case we can take

advantage of the fact tha t our partial deduction system is integrated in CiaoPP,
which includes extensive program analysis facilities. A ñrst step in this direction has

been taken in (Albert et al. 2006) by using backwards analysis to infer purity as-

sertions which determine when a non-leftmost step is safe in the presence of impure

predicates.

References

AHO, A. V., SETHI, R., AND ULLMAN, J. D. 1986. Compilers - Principies, Techniques
and Tools. Addison-Wesley.

ALBERT, E., HANUS, M., AND VIDAL, G. 2002. A Practical Partial Evaluation Seríeme
for Multi-Paradigm Declarative Languages. Journal of Functional and Logic Program-
ming 2002, 1.

ALBERT, E., PUEBLA, G., AND GALLAGHER, J. 2006. Non-Leftmost Unfolding in Partial
Evaluation of Logic Programs with Impure Predicates. In 15th International Symposium
on Logic-based Program Synthesis and Transformation (LOPSTR'05). Number 3901 in
LNCS. Springer-Verlag, 115-132.

BRUYNOOGHE, M. 1991. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming 10, 91-124.

BRUYNOOGHE, M., SCHREYE, D. D., AND MARTENS, B. 1992. A General Criterion for
Avoiding Infinite Unfolding during Partial Deduction. New Generation Computing 1,11,
47-79.

BUENO, F., CABEZA, D., CARRO, M., HERMENEGILDO, M., LÓPEZ-GARCÍA, P., AND

(E D S .) , G. P. 2004. The Ciao System. Reference Manual (vi.10). Tech, rep., School of
Computer Science (UPM). Available at http://www.ciaohome.org.

BUENO, F., CABEZA, D., CARRO, M., HERMENEGILDO, M., LÓPEZ-GARCÍA, P., AND

(E D S .) , G. P. 2009. The Ciao System. Ref. Manual (vi.13). Tech. rep. Available at
http://www.ciaohome.org.

CHRISTENSEN, N. H. AND GLÜCK, R. 2004. Offline partial evaluation can be as aecurate
as online partial evaluation. ACM Trans. Program. Lang. Syst. 26, 1, 191-220.

CRAIG, S.-J., GALLAGHER, J. P. , LEUSCHEL, M., AND HENRIKSEN, K. S. 2004. Fully
automatic binding-time analysis for prolog. In LOPSTR. 53-68.

D E SCHREYE, D., GLÜCK, R., JORGENSEN, J., LEUSCHEL, M., MARTENS, B., AND

S0RENSEN, M. H. 1999. Conjunctive partial deduction: Foundations, control, algorithms
and experiments. Journal of Logic Programming 41, 2 & 3 (November), 231-277.

http://www.ciaohome.org
http://www.ciaohome.org

ETALLE, S., GABBRIELLI, M., AND MARCHIORI, E. 1997. A Transformation System for
CLP with Dynamic Scheduling and CCP. In Proc. of the ACM Sigplan PEPM'97. ACM
Press, New York, 137-150.

GALLAGHER, J. 1993. Tutorial on specialisation of logic programs. In Proceedings of
PEPM'93, the ACM Sigplan Symposium on Partial Evaluation and Semantics-Based
Program Manipulation. ACM Press, 88-98.

HERMENEGILDO, M., PUEBLA, G., BUENO, F., AND LÓPEZ-GARCÍA, P. 2005. Integrated

Program Debugging, Verification, and Optimization Using Abstract Interpretation (and
The Ciao System Preprocessor). Science of Computer Programming 58, 1-2 (October),
115-140.

JONES, N., GOMARD, C , AND SESTOFT, P. 1993. Partial Evaluation and Automatic
Program Generation. Prentice Hall, New York.

KRUSKAL, J. 1960. Well-quasi-ordering, the Tree Theorem, and Vazsonyi's Conjecture.
Transactions of the American Mathematical Society 95, 210-225.

L E CHARLIER, B., ROSSI, S., AND VAN HENTENRYCK, P. 2002. Sequence Based Abstract
Interpretation of Prolog. Theory and Practice of Logic Programming 2, 1, 25-84.

LEUSCHEL, M. 1994. Partial evaluation of the "real thing". In Proc. of LOPSTR'94 and
META '91 LNCS 883. Springer-Verlag, 122-137.

LEUSCHEL, M. 1996-2002a. The ECCE partial deduction system and the DPPD library of
benchmarks. Obtainable via ht tp: / /www.ecs.soton.ac.uk/~mal.

LEUSCHEL, M. 1998. On the Power of Homeomorphic Embedding for Online Termination.
In Proceedings of SAS'98, G. Levi, Ed. LNCS, vol. 1503. Springer-Verlag, Pisa, Italy,
230-245.

LEUSCHEL, M. 2002b. Homeomorphic embedding for online termination of symbolic meth-
ods. In The Essence of Computation - Essays dedicated to Neil Jones, T. TE. Mogensen,
D. Schmidt, and I. H. Sudborough, Eds. LNCS 2566. Springer-Verlag, 379-403.

LEUSCHEL, M. AND BRUYNOOGHE, M. 2002. Logic Program Specialisation through Partial
Deduction: Control Issues. Theory and Practice of Logic Programming 2, 4 & 5 (July
& September), 461-515.

LEUSCHEL, M., CRAIG, S., BRUYNOOGHE, M., AND VANHOOF, W. 2004. Specialising

interpreters using offline partial deduction. In Program Development in Computational
Logic. Lecture Notes in Computer Science, vol. 3049. Springer, 340-375.

LEUSCHEL, M., JORGENSEN, J., VANHOOF, W., AND BRUYNOOGHE, M. 2004. Offline

specialisation in prolog using a hand-written compiler generator. TPLP 4, 1-2, 139 -
191.

LLOYD, J. 1987. Foundations of Logic Programming. Springer, second, extended edition.

LLOYD, J. W. AND SHEPHERDSON, J. C. 1991. Partial evaluation in logic programming.

The Journal of Logic Programming 11, 217-242.

MARTENS, B. AND D E SCHREYE, D. 1996. Automatic finite unfolding using well-founded

measures. The Journal of Logic Programming 28, 2 (August), 89-146.

PUEBLA, G., BUENO, F., AND HERMENEGILDO, M. 2000. An Assertion Language for

Constraint Logic Programs. In Analysis and Visualization Tools for Constraint Pro
gramming. Springer LNCS 1870, 23-61.

SAHLIN, D. 1993. Mixtus: An Automatic Partial Evaluator for Full Prolog. New Genera
tion Computing 12, 1, 7-51.

S0RENSEN, M. AND GLÜCK, R. 1995. An Algorithm of Generalization in Positive Super-

compilation. In Proc. of ILPS'95. The MIT Press, 465-479.

VENKEN, R. AND DEMOEN, B. 1988. A partial evaluation system for prolog: some practical
considerations. New Generation Computing 6, 279-290.

http://www.ecs.soton.ac.uk/~mal

