388 research outputs found

    Excitated state properties of 20-chloro-chlorophyll a

    Get PDF
    The excited-state and lasing properties of 20-chloro-chlorophyll a in ether solution were compared to those of chlorophyll a. Desactivation parameters and cross-sections were obtained from non-linear absorption spectroscopy in combination with a physico-mathematical methods package. The Cl substituent at C-20 (1) increases both intersystem crossing and internal conversion, (2) produces a blue-shift of the S1 absorption spectrum, and (3) leads to pronounced photochemistry

    Pressure-induced changes of the vibrational modes of spin-crossover complexes studied by nuclear resonance scattering of synchrotron radiation

    Full text link
    Nuclear inelastic scattering (NIS) spectra were recorded for the spin-crossover complexes STP and ETP (STP = [Fe(1,1,1-trisf[N-(2-pyridylmethyl)-N-methylamino]methylg- ethane)](ClO4)2 and ETP = [Fe(1,1,1-trisf[N-(2-pyridylmethyl)-N-methylamino]methylg-butane)](ClO4)2) at 30 K and at room temperature and also at ambient pressure and applied pressure (up to 2.6 GPa). Spin transition from the high-spin (HS) to the low-spin (LS) state was observed by lowering temperature and also by applying pressure at room temperature and has been assigned to the hardening of iron-bond stretching modes due to the smaller volume in the LS isomer

    Strong coupling constants of bottom and charmed mesons with scalar, pseudoscalar and axial vector kaons

    Get PDF
    The strong coupling constants, gDsDK0∗g_{D_{s}DK_0^*}, gBsBK0∗g_{B_{s}BK_0^*}, gDs∗DKg_{D^{\ast}_{s}D K}, gBs∗BKg_{B^{\ast}_{s}BK}, gDs∗DK1g_{D^{\ast}_{s}D K_1} and gBs∗BK1g_{B^{\ast}_{s}BK_1}, where K0∗K_0^*, KK and K1K_1 are scalar, pseudoscalar and axial vector kaon mesons, respectively are calculated in the framework of three-point QCD sum rules. In particular, the correlation functions of the considered vertices when both B(D)B(D) and K0∗(K)(K1)K_0^*(K)(K_1) mesons are off-shell are evaluated. In the case of K1K_1, which is either K1(1270)K_1(1270) or K1(1400)K_1(1400), the mixing between these two states are also taken into account. A comparison of the obtained result with the existing prediction on gDs∗DKg_{D^{\ast}_{s}D K} as the only coupling constant among the considered vertices, previously calculated in the literature, is also made.Comment: 20 Pages, 3 Figures and 8 Table

    On insertion-deletion systems over relational words

    Full text link
    We introduce a new notion of a relational word as a finite totally ordered set of positions endowed with three binary relations that describe which positions are labeled by equal data, by unequal data and those having an undefined relation between their labels. We define the operations of insertion and deletion on relational words generalizing corresponding operations on strings. We prove that the transitive and reflexive closure of these operations has a decidable membership problem for the case of short insertion-deletion rules (of size two/three and three/two). At the same time, we show that in the general case such systems can produce a coding of any recursively enumerable language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure

    Two- and three-body color flux tubes in the Chromo Dielectric Model

    Full text link
    Using the framework of the Chromo Dielectric Model we perform an analysis of color electric flux tubes in meson-like qqˉq\bar{q} and baryon-like qqqqqq quark configurations. We discuss the Abelian color structure of the model and point out a symmetry in color space as a remnant of the SU(3) symmetry of QCD. The generic features of the model are discussed by varying the model parameters. We fix these parameters by reproducing the string tension τ=980\tau=980 MeV/fm and the transverse width ρ=0.35\rho=0.35 fm of the qqˉq\bar{q} flux tube obtained in lattice calculations. We use a bag constant B1/4=(240−260)B^{1/4}=(240-260) MeV, a glueball mass mg=(1000−1700)m_g = (1000-1700) MeV and a strong coupling constant CFαs=0.2−0.3C_F \alpha_s = 0.2-0.3. We show that the asymptotic string profile of an infinitely long flux tube is already reached for qqˉq\bar{q} separations R≄1.0R\ge1.0 fm. A connection to the Dual Color Superconductor is made by extracting a magnetic current from the model equations and a qualitative agreement between the two descriptions of confinement is shown. In the study of the qqqqqq system we observe a Δ\mathsf{\Delta}-like geometry for the color electric fields and a \textsf{Y}-like geometry in the scalar fields both in the energy density distribution and in the corresponding potentials. The resulting total qqqqqq potential is described neither by the Δ\mathsf{\Delta}-picture nor by the \textsf{Y}-picture alone.Comment: 32 pages, 35 eps-figures, revised version, some references + 1 eps-file added, to be published in Phys.Rev.

    Short-range correlations in quark matter

    Full text link
    We investigate the role of short-range correlations in quark matter within the framework of the SU(2) NJL model. Employing a next-to-leading order expansion in 1/N_c for the quark self energy we construct a fully self-consistent model that is based on the relations between spectral functions and self energies. In contrast to the usual quasiparticle approximations we take the collisional broadening of the quark spectral function consequently into account. Mesons are dynamically generated in the fashion of a random phase approximation, using full in-medium propagators in the quark loops. The results are self-consistently fed back into the quark self energy. Calculations have been performed for finite chemical potentials at zero temperature. The short-range correlations do not only generate finite widths in the spectral functions but also have influence on the chiral phase transition.Comment: 40 pages, 23 figures; revised and extended paper, accepted for publication in Phys. Rev.

    Interactions of multi-quark states in the chromodielectric model

    Full text link
    We investigate 4-quark (qqqˉqˉqq\bar{q}\bar{q}) systems as well as multi-quark states with a large number of quarks and anti-quarks using the chromodielectric model. In the former type of systems the flux distribution and the corresponding energy of such systems for planar and non-planar geometries are studied. From the comparison to the case of two independent qqˉq\bar{q}-strings we deduce the interaction potential between two strings. We find an attraction between strings and a characteristic string flip if there are two degenerate string combinations between the four particles. The interaction shows no strong Van-der-Waals forces and the long range behavior of the potential is well described by a Yukawa potential, which might be confirmed in future lattice calculations. The multi-quark states develop an inhomogeneous porous structure even for particle densities large compared to nuclear matter constituent quark densities. We present first results of the dependence of the system on the particle density pointing towards a percolation type of transition from a hadronic matter phase to a quark matter phase. The critical energy density is found at Ï”c=1.2GeV/fm3\epsilon_c = 1.2 GeV/fm^3.Comment: 19 pages, 40 eps-figures, RevTex 4, v2: typos correcte

    Low energy onset of nuclear shadowing in photoabsorption

    Get PDF
    The early onset of nuclear shadowing in photoabsorption at low photon energies has recently been interpreted as a possible signature of a decrease of the rho meson mass in nuclei. We show that one can understand this early onset within simple Glauber theory if one takes the negative real part of the rho N scattering amplitudes into account, corresponding to a higher effective mass of the rho meson in nuclear medium.Comment: REVTEX, 9 pages, including 4 eps figure

    Nuclear shadowing at low photon energies

    Full text link
    We calculate the shadowing effect in nuclear photoabsorption at low photon energies (1-3 GeV) within a multiple scattering approach. We avoid some of the high energy approximations that are usually made in simple Glauber theory like the narrow width and the eikonal approximation. We find that the main contribution to nuclear shadowing at low energies stems from ρ0\rho^0 mesons with masses well below their pole mass. We also show that the possibility of scattering in non forward directions allows for a new contribution to shadowing at low energies: the production of neutral pions as intermediate hadronic states enhances the shadowing effect in the onset region. For light nuclei and small photon energies they give rise to about 30% of the total shadowing effect.Comment: RevTeX, 16 pages including 6 eps figures; new calculation of effective pion propagator, negligible effect on results; version to be published in Phys. Rev.
    • 

    corecore