8,078 research outputs found

    A rocket-borne pulse-height analyzer for energetic particle measurements

    Get PDF
    The pulse-height analyzer basically resembles a time-sharing multiplexing data-acquisition system which acquires analog data (from energetic particle spectrometers) and converts them into digital code. The PHA simultaneously acquires pulse-height information from the analog signals of the four input channels and sequentially multiplexes the digitized data to a microprocessor. The PHA together with the microprocessor form an on-board real-time data-manipulation system. The system processes data obtained during the rocket flight and reduces the amount of data to be sent back to the ground station. Consequently the data-reduction process for the rocket experiments is speeded up. By using a time-sharing technique, the throughput rate of the microprocessor is increased. Moreover, data from several particle spectrometers are manipulated to share one information channel; consequently, the TM capacity is increased

    Perturbative Approach to the Quasinormal Modes of Dirty Black Holes

    Get PDF
    Using a recently developed perturbation theory for uasinormal modes (QNM's), we evaluate the shifts in the real and imaginary parts of the QNM frequencies due to a quasi-static perturbation of the black hole spacetime. We show the perturbed QNM spectrum of a black hole can have interesting features using a simple model based on the scalar wave equation.Comment: Published in PR

    Quasi-Normal Mode Expansion for Linearized Waves in Gravitational Systems

    Full text link
    The quasinormal modes (QNM's) of gravitational systems modeled by the Klein-Gordon equation with effective potentials are studied in analogy to the QNM's of optical cavities. Conditions are given for the QNM's to form a complete set, i.e., for the Green's function to be expressible as a sum over QNM's, answering a conjecture by Price and Husain [Phys. Rev. Lett. {\bf 68}, 1973 (1992)]. In the cases where the QNM sum is divergent, procedures for regularization are given. The crucial condition for completeness is the existence of spatial discontinuities in the system, e.g., the discontinuity at the stellar surface in the model of Price and Husain.Comment: 12 pages, WUGRAV-94-

    Decoherence-full subsystems and the cryptographic power of a private shared reference frame

    Get PDF
    We show that private shared reference frames can be used to perform private quantum and private classical communication over a public quantum channel. Such frames constitute a novel type of private shared correlation (distinct from private classical keys or shared entanglement) useful for cryptography. We present optimally efficient schemes for private quantum and classical communication given a finite number of qubits transmitted over an insecure channel and given a private shared Cartesian frame and/or a private shared reference ordering of the qubits. We show that in this context, it is useful to introduce the concept of a decoherence-full subsystem, wherein every state is mapped to the completely mixed state under the action of the decoherence.Comment: 13 pages, published versio

    Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes

    Get PDF
    The dynamics of relativistic stars and black holes are often studied in terms of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with different effective potentials V(x)V(x). In this paper we present a systematic study of the relation between the structure of the QNM's of the KG equation and the form of V(x)V(x). In particular, we determine the requirements on V(x)V(x) in order for the QNM's to form complete sets, and discuss in what sense they form complete sets. Among other implications, this study opens up the possibility of using QNM expansions to analyse the behavior of waves in relativistic systems, even for systems whose QNM's do {\it not} form a complete set. For such systems, we show that a complete set of QNM's can often be obtained by introducing an infinitesimal change in the effective potential

    Blockchain-IoT-driven nursing workforce planning for effective long-term care management in nursing homes

    Get PDF
    Due to the global ageing population, the increasing demand for long-term care services for the elderly has directed considerable attention towards the renovation of nursing homes. Although nursing homes play an essential role within residential elderly care, professional shortages have created serious pressure on the elderly service sector. Effective workforce planning is vital for improving the efficacy and workload balance of existing nursing staff in today's complex and volatile long-term care service market. Currently, there is lack of an integrated solution to monitor care services and determine the optimal nursing staffing strategy in nursing homes. This study addresses the above challenge through the formulation of nursing staffing optimisation under the blockchain-internet of things (BIoT) environment. Embedding a blockchain into IoT establishes the long-term care platform for the elderly and care workers, thereby decentralising long-term care information in the nursing home network to achieve effective care service monitoring. Moreover, such information is further utilised to optimise nursing staffing by using a genetic algorithm. A case study of a Hong Kong nursing home was conducted to illustrate the effectiveness of the proposed system. We found that the total monthly staffing cost after using the proposed model was significantly lower than the existing practice with a change of -13.48%, which considers the use of heterogeneous workforce and temporary staff. Besides, the care monitoring and staffing flexibility are further enhanced, in which the concept of skill substitution is integrated in nursing staffing optimisation

    Surface critical behavior of driven diffusive systems with open boundaries

    Full text link
    Using field theoretic renormalization group methods we study the critical behavior of a driven diffusive system near a boundary perpendicular to the driving force. The boundary acts as a particle reservoir which is necessary to maintain the critical particle density in the bulk. The scaling behavior of correlation and response functions is governed by a new exponent eta_1 which is related to the anomalous scaling dimension of the chemical potential of the boundary. The new exponent and a universal amplitude ratio for the density profile are calculated at first order in epsilon = 5-d. Some of our results are checked by computer simulations.Comment: 10 pages ReVTeX, 6 figures include

    A Recursive Method of the Stochastic State Selection for Quantum Spin Systems

    Full text link
    In this paper we propose the recursive stochastic state selection method, an extension of the recently developed stochastic state selection method in Monte Carlo calculations for quantum spin systems. In this recursive method we use intermediate states to define probability functions for stochastic state selections. Then we can diminish variances of samplings when we calculate expectation values of the powers of the Hamiltonian. In order to show the improvement we perform numerical calculations of the spin-1/2 anti-ferromagnetic Heisenberg model on the triangular lattice. Examining results on the ground state of the 21-site system we confide this method in its effectiveness. We also calculate the lowest and the excited energy eigenvalues as well as the static structure factor for the 36-site system. The maximum number of basis states kept in a computer memory for this system is about 3.6 x 10**7. Employing a translationally invariant initial trial state, we evaluate the lowest energy eigenvalue within 0.5 % of the statistical errors.Comment: 14 pages, 1 figur
    corecore