29,451 research outputs found
Do large rate coefficients for ion-polar neutral reactions have a serious effect on chemical models of dense clouds?
In order to incorporate large ion-polar neutral rate coefficients into existing gas phase reaction networks, it is necessary to utilize simplified theoretical treatments because of the significant number of rate coefficients needed. The authors have used two simple theoretical treatments: the locked dipole approach of Moran and Hamill for linear polar neutrals and the trajectory scaling approach of Su and Chesnavich for nonlinear polar neutrals. The former approach is suitable for linear species because in the interstellar medium these are rotationally relaxed to a large extent and the incoming charged reactants can lock their dipoles into the lowest energy configuration. The latter approach is a better approximation for nonlinear neutral species, in which rotational relaxation is normally less severe and the incoming charged reactants are not as effective at locking the dipoles. The treatments are in reasonable agreement with more detailed long range theories and predict an inverse square root dependence on kinetic temperature for the rate coefficient. Compared with the locked dipole method, the trajectory scaling approach results in rate coefficients smaller by a factor of approximately 2.5
Microwave conductivity in the ferropnictides with specific application to BaKFeAs
We calculate the microwave conductivity of a two band superconductor with
gap symmetry. Inelastic scattering is included approximately in a BCS
model augmented by a temperature dependent quasiparticle scattering rate
assumed, however, to be frequency independent. The possibility that the s-wave
gap on one or the other of the electron or hole pockets is anisotropic is
explored including cases with and without gap nodes on the Fermi surface. A
comparison of our BCS results with those obtained in the Two Fluid Model (TFM)
is provided as well as with the case of the cuprates where the gap has d-wave
symmetry and with experimental results in BaKFeAs. The
presently available microwave conductivity data in this material provides
strong evidence for large anisotropies in the electron pocket s-wave gap. While
a best fit favors a gap with nodes on the Fermi surface this disagrees with
some but not all penetration depth measurements which would favor a node-less
gap as do also thermal conductivity and nuclear magnetic resonance data.Comment: 12 pages, 9 figures. Phys. Rev. B (submitted
Quantum Entanglement Capacity with Classical Feedback
For any quantum discrete memoryless channel, we define a quantity called
quantum entanglement capacity with classical feedback (), and we show that
this quantity lies between two other well-studied quantities. These two
quantities - namely the quantum capacity assisted by two-way classical
communication () and the quantum capacity with classical feedback ()
- are widely conjectured to be different: there exists quantum discrete
memoryless channel for which . We then present a general scheme to
convert any quantum error-correcting codes into adaptive protocols for this
newly-defined quantity of the quantum depolarizing channel, and illustrate with
Cat (repetition) code and Shor code. We contrast the present notion with
entanglement purification protocols by showing that whilst the Leung-Shor
protocol can be applied directly, recurrence methods need to be supplemented
with other techniques but at the same time offer a way to improve the
aforementioned Cat code. For the quantum depolarizing channel, we prove a
formula that gives lower bounds on the quantum capacity with classical feedback
from any protocols. We then apply this formula to the protocols
that we discuss to obtain new lower bounds on the quantum capacity with
classical feedback of the quantum depolarizing channel
Ordering dynamics of the driven lattice gas model
The evolution of a two-dimensional driven lattice-gas model is studied on an
L_x X L_y lattice. Scaling arguments and extensive numerical simulations are
used to show that starting from random initial configuration the model evolves
via two stages: (a) an early stage in which alternating stripes of particles
and vacancies are formed along the direction y of the driving field, and (b) a
stripe coarsening stage, in which the number of stripes is reduced and their
average width increases. The number of stripes formed at the end of the first
stage is shown to be a function of L_x/L_y^\phi, with \phi ~ 0.2. Thus,
depending on this parameter, the resulting state could be either single or
multi striped. In the second, stripe coarsening stage, the coarsening time is
found to be proportional to L_y, becoming infinitely long in the thermodynamic
limit. This implies that the multi striped state is thermodynamically stable.
The results put previous studies of the model in a more general framework
Theory of electron-hole asymmetry in doped {\em CuO} planes
The magnetic phase diagrams, and other physical characteristics, of the hole-
doped {\em LaSrCuO} and electron-doped {\em NdCe
CuO} high-temperature superconductors are profoundly different. Starting
with the model, the spin distortions and the spatial distri-
bution of carriers for the multiply-doped systems will be related to the diffe-
rent ground states' single-hole quasiparticles. The low doping limit of the
hole-doped material corresponds to quasiparticles,
states that generate so-called Shraiman-Siggia long-ranged dipolar spin distor-
tions via backflow. We propose that for the electron-doped materials the
single- hole ground state corresponds to quasiparticles; we
show that the spin distortions generated by such carriers are short-ranged.
Then, we demonstrate the effect of this single-carrier difference in
many-carrier ground states via exact diagonalization results by evaluating
for up to 4 carriers in small clusters. Also, the different
single-carrier quasiparticles generate important differences in the spatial
distributions: for the hole-doped material the quasiparticles tend to stay far
apart from one another, whereas for the electron-doped material we find
tendencies consistent with the clustering of carriers, and possibly of
low-energy fluctuations into an electronic phase separated state. Lastly, we
propose the extrapolation of an approach based on the model to
the hole-doped 123 system.Comment: 27 pages, revtex 3.0, 6 Postscript Figures; to be published in Phys.
Rev. B, Nov. 1, 199
Specific heat across the superconducting dome in the cuprates
The specific heat of the superconducting cuprates is calculated over the
entire phase diagram. A d-wave BCS approach based on the large Fermi surface of
Fermi liquid and band structure theory provides a good description of the
overdoped region. At underdoping it is essential to include the emergence of a
second energy scale, the pseudogap and its associated Gutzwiller factor, which
accounts for a reduction in the coherent piece of the electronic Green's
function due to increased correlations as the Mott insulating state is
approached. In agreement with experiment, we find that the slope of the linear
in T dependence of the low temperature specific heat rapidly increases above
optimum doping while it is nearly constant below optimum. Our theoretical
calculations also agree with recent data on BiSrLaCuO for which the normal state is accessed through the
application of a large magnetic field. A quantum critical point is located at a
doping slightly below optimum.Comment: submitted to PRB; 8 pages, 5 figure
Affordance and Affect in Promotional Websites
Guidelines for e-commerce website design deal well with the more objective aspects of page design, but have less to say about overall site structure and users' emotional responses. In this study we used a semiotic approach to investigate how several fashion websites provide affordances for navigation and produce affective responses. We gained some interesting insights into how users interpret these websites and more importantly, we developed a method which could be usefule in evaluating website design
Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes
The dynamics of relativistic stars and black holes are often studied in terms
of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with
different effective potentials . In this paper we present a systematic
study of the relation between the structure of the QNM's of the KG equation and
the form of . In particular, we determine the requirements on in
order for the QNM's to form complete sets, and discuss in what sense they form
complete sets. Among other implications, this study opens up the possibility of
using QNM expansions to analyse the behavior of waves in relativistic systems,
even for systems whose QNM's do {\it not} form a complete set. For such
systems, we show that a complete set of QNM's can often be obtained by
introducing an infinitesimal change in the effective potential
- …
