29,451 research outputs found

    Do large rate coefficients for ion-polar neutral reactions have a serious effect on chemical models of dense clouds?

    Get PDF
    In order to incorporate large ion-polar neutral rate coefficients into existing gas phase reaction networks, it is necessary to utilize simplified theoretical treatments because of the significant number of rate coefficients needed. The authors have used two simple theoretical treatments: the locked dipole approach of Moran and Hamill for linear polar neutrals and the trajectory scaling approach of Su and Chesnavich for nonlinear polar neutrals. The former approach is suitable for linear species because in the interstellar medium these are rotationally relaxed to a large extent and the incoming charged reactants can lock their dipoles into the lowest energy configuration. The latter approach is a better approximation for nonlinear neutral species, in which rotational relaxation is normally less severe and the incoming charged reactants are not as effective at locking the dipoles. The treatments are in reasonable agreement with more detailed long range theories and predict an inverse square root dependence on kinetic temperature for the rate coefficient. Compared with the locked dipole method, the trajectory scaling approach results in rate coefficients smaller by a factor of approximately 2.5

    Microwave conductivity in the ferropnictides with specific application to Ba1x_{1-x}Kx_xFe2_2As2_2

    Full text link
    We calculate the microwave conductivity of a two band superconductor with s±s^\pm gap symmetry. Inelastic scattering is included approximately in a BCS model augmented by a temperature dependent quasiparticle scattering rate assumed, however, to be frequency independent. The possibility that the s-wave gap on one or the other of the electron or hole pockets is anisotropic is explored including cases with and without gap nodes on the Fermi surface. A comparison of our BCS results with those obtained in the Two Fluid Model (TFM) is provided as well as with the case of the cuprates where the gap has d-wave symmetry and with experimental results in Ba1x_{1-x}Kx_xFe2_2As2_2. The presently available microwave conductivity data in this material provides strong evidence for large anisotropies in the electron pocket s-wave gap. While a best fit favors a gap with nodes on the Fermi surface this disagrees with some but not all penetration depth measurements which would favor a node-less gap as do also thermal conductivity and nuclear magnetic resonance data.Comment: 12 pages, 9 figures. Phys. Rev. B (submitted

    Quantum Entanglement Capacity with Classical Feedback

    Full text link
    For any quantum discrete memoryless channel, we define a quantity called quantum entanglement capacity with classical feedback (EBE_B), and we show that this quantity lies between two other well-studied quantities. These two quantities - namely the quantum capacity assisted by two-way classical communication (Q2Q_2) and the quantum capacity with classical feedback (QBQ_B) - are widely conjectured to be different: there exists quantum discrete memoryless channel for which Q2>QBQ_2>Q_B. We then present a general scheme to convert any quantum error-correcting codes into adaptive protocols for this newly-defined quantity of the quantum depolarizing channel, and illustrate with Cat (repetition) code and Shor code. We contrast the present notion with entanglement purification protocols by showing that whilst the Leung-Shor protocol can be applied directly, recurrence methods need to be supplemented with other techniques but at the same time offer a way to improve the aforementioned Cat code. For the quantum depolarizing channel, we prove a formula that gives lower bounds on the quantum capacity with classical feedback from any EBE_B protocols. We then apply this formula to the EBE_B protocols that we discuss to obtain new lower bounds on the quantum capacity with classical feedback of the quantum depolarizing channel

    Ordering dynamics of the driven lattice gas model

    Full text link
    The evolution of a two-dimensional driven lattice-gas model is studied on an L_x X L_y lattice. Scaling arguments and extensive numerical simulations are used to show that starting from random initial configuration the model evolves via two stages: (a) an early stage in which alternating stripes of particles and vacancies are formed along the direction y of the driving field, and (b) a stripe coarsening stage, in which the number of stripes is reduced and their average width increases. The number of stripes formed at the end of the first stage is shown to be a function of L_x/L_y^\phi, with \phi ~ 0.2. Thus, depending on this parameter, the resulting state could be either single or multi striped. In the second, stripe coarsening stage, the coarsening time is found to be proportional to L_y, becoming infinitely long in the thermodynamic limit. This implies that the multi striped state is thermodynamically stable. The results put previous studies of the model in a more general framework

    Theory of electron-hole asymmetry in doped {\em CuO2_2} planes

    Full text link
    The magnetic phase diagrams, and other physical characteristics, of the hole- doped {\em La2x_{2-x}Srx_xCuO4_4} and electron-doped {\em Nd2x_{2-x}Cex_x CuO4_4} high-temperature superconductors are profoundly different. Starting with the ttJt-t^{\prime}-J model, the spin distortions and the spatial distri- bution of carriers for the multiply-doped systems will be related to the diffe- rent ground states' single-hole quasiparticles. The low doping limit of the hole-doped material corresponds to k=(π/2,π/2)\vec k = (\pi/2,\pi/2) quasiparticles, states that generate so-called Shraiman-Siggia long-ranged dipolar spin distor- tions via backflow. We propose that for the electron-doped materials the single- hole ground state corresponds to k=(π,0)\vec k = (\pi,0) quasiparticles; we show that the spin distortions generated by such carriers are short-ranged. Then, we demonstrate the effect of this single-carrier difference in many-carrier ground states via exact diagonalization results by evaluating S(q)S(\vec q) for up to 4 carriers in small clusters. Also, the different single-carrier quasiparticles generate important differences in the spatial distributions: for the hole-doped material the quasiparticles tend to stay far apart from one another, whereas for the electron-doped material we find tendencies consistent with the clustering of carriers, and possibly of low-energy fluctuations into an electronic phase separated state. Lastly, we propose the extrapolation of an approach based on the ttJt-t^{\prime}-J model to the hole-doped 123 system.Comment: 27 pages, revtex 3.0, 6 Postscript Figures; to be published in Phys. Rev. B, Nov. 1, 199

    Specific heat across the superconducting dome in the cuprates

    Full text link
    The specific heat of the superconducting cuprates is calculated over the entire phase diagram. A d-wave BCS approach based on the large Fermi surface of Fermi liquid and band structure theory provides a good description of the overdoped region. At underdoping it is essential to include the emergence of a second energy scale, the pseudogap and its associated Gutzwiller factor, which accounts for a reduction in the coherent piece of the electronic Green's function due to increased correlations as the Mott insulating state is approached. In agreement with experiment, we find that the slope of the linear in T dependence of the low temperature specific heat rapidly increases above optimum doping while it is nearly constant below optimum. Our theoretical calculations also agree with recent data on Bi2_2Sr2x_{2-\rm x}Lax_{\rm x}CuO6+δ_{6+\delta} for which the normal state is accessed through the application of a large magnetic field. A quantum critical point is located at a doping slightly below optimum.Comment: submitted to PRB; 8 pages, 5 figure

    Affordance and Affect in Promotional Websites

    Get PDF
    Guidelines for e-commerce website design deal well with the more objective aspects of page design, but have less to say about overall site structure and users' emotional responses. In this study we used a semiotic approach to investigate how several fashion websites provide affordances for navigation and produce affective responses. We gained some interesting insights into how users interpret these websites and more importantly, we developed a method which could be usefule in evaluating website design

    Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes

    Get PDF
    The dynamics of relativistic stars and black holes are often studied in terms of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with different effective potentials V(x)V(x). In this paper we present a systematic study of the relation between the structure of the QNM's of the KG equation and the form of V(x)V(x). In particular, we determine the requirements on V(x)V(x) in order for the QNM's to form complete sets, and discuss in what sense they form complete sets. Among other implications, this study opens up the possibility of using QNM expansions to analyse the behavior of waves in relativistic systems, even for systems whose QNM's do {\it not} form a complete set. For such systems, we show that a complete set of QNM's can often be obtained by introducing an infinitesimal change in the effective potential
    corecore