465 research outputs found

    Somatostatin receptor expression, tumour response, and quality of life in patients with advanced hepatocellular carcinoma treated with long-acting octreotide

    Get PDF
    Octreotide may extend survival in hepatocellular carcinoma (HCC). Forty-one per cent of HCCs have high-affinity somatostatin receptors. We aimed to determine the feasibility, safety, and activity of long-acting octreotide in advanced HCC; to identify the best method for assessing somatostatin receptor expression; to relate receptor expression to clinical outcomes; and to evaluate toxicity. Sixty-three patients with advanced HCC received intramuscular long-acting octreotide 20 mg monthly until progression or toxicity. Median age was 67 years (range 28–81 years), male 81%, Child–Pugh A 83%, and B 17%. The aetiologies of chronic liver disease were alcohol (22%), viral hepatitis (44%), and haemochromatosis (6%). Prior treatments for HCC included surgery (8%), chemotherapy (2%), local ablation (11%), and chemoembolisation (6%). One patient had an objective partial tumour response (2%, 95% CI 0–9%). Serum alpha-fetoprotein levels decreased more than 50% in four (6%). Median survival was 8 months. Thirty four of 61 patients (56%) had receptor expression detected by scintigraphy; no clear relationship with clinical outcomes was identified. There were few grade 3 or 4 toxicities: hyperglycaemia (8%), hypoglycaemia (2%), diarrhoea (5%), and anorexia (2%). Patients reported improvements in some symptoms, but no major changes in quality of life were detected. Long-acting octreotide is safe in advanced HCC. We found little evidence of anticancer activity. A definitive randomised trial would identify whether patients benefit from this treatment in other ways

    Formation of regulatory modules by local sequence duplication

    Get PDF
    Turnover of regulatory sequence and function is an important part of molecular evolution. But what are the modes of sequence evolution leading to rapid formation and loss of regulatory sites? Here, we show that a large fraction of neighboring transcription factor binding sites in the fly genome have formed from a common sequence origin by local duplications. This mode of evolution is found to produce regulatory information: duplications can seed new sites in the neighborhood of existing sites. Duplicate seeds evolve subsequently by point mutations, often towards binding a different factor than their ancestral neighbor sites. These results are based on a statistical analysis of 346 cis-regulatory modules in the Drosophila melanogaster genome, and a comparison set of intergenic regulatory sequence in Saccharomyces cerevisiae. In fly regulatory modules, pairs of binding sites show significantly enhanced sequence similarity up to distances of about 50 bp. We analyze these data in terms of an evolutionary model with two distinct modes of site formation: (i) evolution from independent sequence origin and (ii) divergent evolution following duplication of a common ancestor sequence. Our results suggest that pervasive formation of binding sites by local sequence duplications distinguishes the complex regulatory architecture of higher eukaryotes from the simpler architecture of unicellular organisms

    A monodisperse transmembrane α-helical peptide barrel

    Get PDF
    The fabrication of monodisperse transmembrane barrels formed from short synthetic peptides has not been demonstrated previously. This is in part because of the complexity of the interactions between peptides and lipids within the hydrophobic environment of a membrane. Here we report the formation of a transmembrane pore through the self-assembly of 35 amino acid α-helical peptides. The design of the peptides is based on the C-terminal D4 domain of the Escherichia coli polysaccharide transporter Wza. By using single-channel current recording, we define discrete assembly intermediates and show that the pore is most probably a helix barrel that contains eight D4 peptides arranged in parallel. We also show that the peptide pore is functional and capable of conducting ions and binding blockers. Such α-helix barrels engineered from peptides could find applications in nanopore technologies such as single-molecule sensing and nucleic-acid sequencing

    Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study

    Get PDF
    Background: The Middle East respiratory syndrome (MERS) coronavirus has caused recurrent outbreaks in the Arabian Peninsula since 2012. Although MERS has low overall human-to-human transmission potential, there is occasional amplification in the healthcare setting, a pattern reminiscent of the dynamics of the severe acute respiratory syndrome (SARS) outbreaks in 2003. Here we provide a head-to-head comparison of exposure patterns and transmission dynamics of large hospital clusters of MERS and SARS, including the most recent South Korean outbreak of MERS in 2015. Methods: To assess the unexpected nature of the recent South Korean nosocomial outbreak of MERS and estimate the probability of future large hospital clusters, we compared exposure and transmission patterns for previously reported hospital clusters of MERS and SARS, based on individual-level data and transmission tree information. We carried out simulations of nosocomial outbreaks of MERS and SARS using branching process models rooted in transmission tree data, and inferred the probability and characteristics of large outbreaks. Results: A significant fraction of MERS cases were linked to the healthcare setting, ranging from 43.5 % for the nosocomial outbreak in Jeddah, Saudi Arabia, in 2014 to 100 % for both the outbreak in Al-Hasa, Saudi Arabia, in 2013 and the outbreak in South Korea in 2015. Both MERS and SARS nosocomial outbreaks are characterized by early nosocomial super-spreading events, with the reproduction number dropping below 1 within three to five disease generations. There was a systematic difference in the exposure patterns of MERS and SARS: a majority of MERS cases occurred among patients who sought care in the same facilities as the index case, whereas there was a greater concentration of SARS cases among healthcare workers throughout the outbreak. Exposure patterns differed slightly by disease generation, however, especially for SARS. Moreover, the distributions of secondary cases per single primary case varied highly across individual hospital outbreaks (Kruskal–Wallis test; P \u3c 0.0001), with significantly higher transmission heterogeneity in the distribution of secondary cases for MERS than SARS. Simulations indicate a 2-fold higher probability of occurrence of large outbreaks (\u3e100 cases) for SARS than MERS (2 % versus 1 %); however, owing to higher transmission heterogeneity, the largest outbreaks of MERS are characterized by sharper incidence peaks. The probability of occurrence of MERS outbreaks larger than the South Korean cluster (n = 186) is of the order of 1 %. Conclusions: Our study suggests that the South Korean outbreak followed a similar progression to previously described hospital clusters involving coronaviruses, with early super-spreading events generating a disproportionately large number of secondary infections, and the transmission potential diminishing greatly in subsequent generations. Differences in relative exposure patterns and transmission heterogeneity of MERS and SARS could point to changes in hospital practices since 2003 or differences in transmission mechanisms of these coronaviruses

    Lack of significant association of an insertion/deletion polymorphism in the angiotensin converting enzyme (ACE) gene with tropical calcific pancreatitis

    Get PDF
    BACKGROUND: The genetic basis of tropical calcific pancreatitis (TCP) is different and is explained by mutations in the pancreatic secretory trypsin inhibitor (SPINK1) gene. However, mutated SPINK1 does not account for the disease in all the patients, neither does it explain the phenotypic heterogeneity between TCP and fibro-calculous pancreatic diabetes (FCPD). Recent studies suggest a crucial role for pancreatic renin-angiotensin system during chronic hypoxia in acute pancreatitis and for angiotensin converting enzyme (ACE) inhibitors in reducing pancreatic fibrosis in experimental models. We investigated the association of ACE gene insertion/deletion (I/D) polymorphism in TCP patients using a case-control approach. Since SPINK1 mutations are proposed a modifier role, we also investigated its interaction with the ACE gene variant. METHODS: We analyzed the I/D polymorphism in the ACE gene (g.11417_11704del287) in 171 subjects comprising 91 TCP and 80 FCPD patients and compared the allelic and genotypic frequency in them with 99 healthy ethnically matched control subjects. RESULTS: We found 46% and 21% of TCP patients, 56% and 19.6% of FCPD patients and 54.5% and 19.2% of the healthy controls carrying the I/D and D/D genotypes respectively (P>0.05). No significant difference in the clinical picture was observed between patients with and without the del allele at the ACE in/del polymorphism in both categories. No association was observed with the presence or absence of N34S SPINK1 mutation in these patients. CONCLUSION: We conclude that the ACE insertion/deletion variant does not show any significant association with the pathogenesis, fibrosis and progression of tropical calcific pancreatitis and the fibro-calculous pancreatic diabetes

    β-Actin and γ-Actin Are Each Dispensable for Auditory Hair Cell Development But Required for Stereocilia Maintenance

    Get PDF
    Hair cell stereocilia structure depends on actin filaments composed of cytoplasmic β-actin and γ-actin isoforms. Mutations in either gene can lead to progressive hearing loss in humans. Since β-actin and γ-actin isoforms are 99% identical at the protein level, it is unclear whether each isoform has distinct cellular roles. Here, we compared the functions of β-actin and γ-actin in stereocilia formation and maintenance by generating mice conditionally knocked out for Actb or Actg1 in hair cells. We found that, although cytoplasmic actin is necessary, neither β-actin nor γ-actin is required for normal stereocilia development or auditory function in young animals. However, aging mice with β-actin– or γ-actin–deficient hair cells develop different patterns of progressive hearing loss and distinct pathogenic changes in stereocilia morphology, despite colocalization of the actin isoforms. These results demonstrate overlapping developmental roles but unique post-developmental functions for β-actin and γ-actin in maintaining hair cell stereocilia

    An animal-specific FSI model of the abdominal aorta in anesthetized mice

    Get PDF
    Recent research has revealed that angiotensin II-induced abdominal aortic aneurysm in mice can be related to medial ruptures occurring in the vicinity of abdominal side branches. Nevertheless a thorough understanding of the biomechanics near abdominal side branches in mice is lacking. In the current work we present a mouse-specific fluid-structure interaction (FSI) model of the abdominal aorta in ApoE(-/-) mice that incorporates in vivo stresses. The aortic geometry was based on contrast-enhanced in vivo micro-CT images, while aortic flow boundary conditions and material model parameters were based on in vivo high-frequency ultrasound. Flow waveforms predicted by FSI simulations corresponded better to in vivo measurements than those from CFD simulations. Peak-systolic principal stresses at the inner and outer aortic wall were locally increased caudal to the celiac and left lateral to the celiac and mesenteric arteries. Interestingly, these were also the locations at which a tear in the tunica media had been observed in previous work on angiotensin II-infused mice. Our preliminary results therefore suggest that local biomechanics play an important role in the pathophysiology of branch-related ruptures in angiotensin-II infused mice. More elaborate follow-up research is needed to demonstrate the role of biomechanics and mechanobiology in a longitudinal setting
    • …
    corecore